Skip to main content
Log in

Highly sensitive fast-response near-infrared photodetectors based on triple cation Sn-Pb perovskite for pulse oximetry system

面向脉搏血氧监测系统的三元阳离子锡铅钙钛矿基高灵敏、快响应近红外光电探测器

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Blood oxygen saturation has emerged as a crucial physiological parameter following electrocardiography, respiration, and blood pressure measurements. In this study, high-quality low bandgap triple cation Sn-Pb perovskite films are fabricated, with the preferred orientation and extended light absorption edge as far as 961 nm. By double-side interfacial modification, the PPPB (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/perovskite/[6,6]-phenyl-C61-butyric acid methyl ester/bathocuproine) near-infrared photodetector exhibits an enhanced photoresponse, with the ultra-fast response speed of 373 ns, wide linear dynamic range of 159 dB, high detectivity of 1.56 × 1011 Jones, and impressive responsivity of 190 mA W−1. Leveraging its exceptional photoelectric performance, the photodetector demonstrates its applicability in a pulse oximetry system, enabling the accurate and non-invasive assessment of heart rate and blood oxygen saturation across various physiological states. This work highlights the immense potential of our photodetector for real-time monitoring of blood oxygen saturation and heart rate.

摘要

血氧饱和度已成为继心电图、呼吸和血压后的一项用于健康评价的重要生理参数. 本研究中, 我们制备出高质量窄带隙三元阳离子Sn-Pb钙钛矿薄膜, 该光电薄膜呈现择优的生长晶向, 且光吸收截止边拓宽至961 nm. 通过双界面层修饰, 构建的PPPB (PEDOT:PSS/perovskite/PCBM/BCP)近红外光电探测器展现出增强的光电响应, 极快的响应速度(373 ns), 宽的线性动态范围(LDR = 159 dB), 高的比探测率(D* = 1.56 × 1011 Jones), 以及优异的光响应度(190 mA W−1). 基于器件出色的光电性能, 我们探索并演示了该探测器在脉搏血氧仪系统中的应用, 实现了对不同生理状态下心率和血氧饱和度的准确和非侵入性评估. 本研究突显了三元阳离子锡铅钙钛矿光探测器在实时监测血氧饱和度和心率方面的应用潜力.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olmedo-Aguirre JO, Reyes-Campos J, Alor-Hernández G, et al. Remote healthcare for elderly people using wearables: A review. Biosensors, 2022, 12: 73

    Article  CAS  Google Scholar 

  2. Fine J, Branan KL, Rodriguez AJ, et al. Sources of inaccuracy in photoplethysmography for continuous cardiovascular monitoring. Biosensors, 2021, 11: 126

    Article  Google Scholar 

  3. Tamura T. Current progress of photoplethysmography and SPO2 for health monitoring. Biomed Eng Lett, 2019, 9: 21–36

    Article  Google Scholar 

  4. Bagha S, Shaw L. A real-time analysis of PPG signal for measurement of SpO2 and pulse rate. Int J Comput Appl Technol, 2011, 36: 45–50

    Google Scholar 

  5. Ensafi AA, Karimi-Maleh H, Ghiaci M, et al. Characterization of Mn-nanoparticles decorated organo-functionalized SiO2-Al2O3 mixed-oxide as a novel electrochemical sensor: Application for the voltammetric determination of captopril. J Mater Chem, 2011, 21: 15022–15030

    Article  CAS  Google Scholar 

  6. Mannheimer PD, Cascini JR, Fein ME, et al. Wavelength selection for low-saturation pulse oximetry. IEEE Trans Biomed Eng, 1997, 44: 148–158

    Article  CAS  Google Scholar 

  7. Wu P, Ye L, Tong L, et al. Van der Waals two-color infrared photodetector. Light Sci Appl, 2022, 11: 6

    Article  CAS  Google Scholar 

  8. Zeng L, Wu D, Jie J, et al. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv Mater, 2020, 32: 2004412

    Article  Google Scholar 

  9. Zhu Q, Tian X, Wong CW, et al. Learning your heart actions from pulse: ECG waveform reconstruction from PPG. IEEE Internet Things J, 2021, 8: 16734–16748

    Article  Google Scholar 

  10. Guo J, Li J, Liu C, et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 µm. Light Sci Appl, 2020, 9: 29

    Article  CAS  Google Scholar 

  11. Wang HP, Li S, Liu X, et al. Low-dimensional metal halide perovskite photodetectors. Adv Mater, 2021, 33: 2003309

    Article  CAS  Google Scholar 

  12. Wu Q, Cen G, Liu Y, et al. A simple-structured silicon photodetector possessing asymmetric Schottky junction for NIR imaging. Phys Lett A, 2021, 412: 127586

    Article  CAS  Google Scholar 

  13. Ma N, Jiang J, Zhao Y, et al. Stable and sensitive tin-lead perovskite photodetectors enabled by azobenzene derivative for near-infrared acousto-optic conversion communications. Nano Energy, 2021, 86: 106113

    Article  CAS  Google Scholar 

  14. Saran R, Curry RJ. Lead sulphide nanocrystal photodetector technologies. Nat Photon, 2016, 10: 81–92

    Article  CAS  Google Scholar 

  15. Park NG, Grätzel M, Miyasaka T, et al. Towards stable and commercially available perovskite solar cells. Nat Energy, 2016, 1: 16152

    Article  CAS  Google Scholar 

  16. Lin R, Xu J, Wei M, et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature, 2022, 603: 73–78

    Article  CAS  Google Scholar 

  17. Wu G, Liang R, Ge M, et al. Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Adv Mater, 2022, 34: 2105635

    Article  CAS  Google Scholar 

  18. Li W, Liu Y, Huang X, et al. Interfacial gradient-energy-band-alignment modulation via a vapor-phase anion-exchange reaction toward lead-free perovskite photodetectors with excellent UV imaging capability. ACS Appl Mater Interfaces, 2021, 13: 53194–53201

    Article  CAS  Google Scholar 

  19. Liu Y, Ji Z, Cen G, et al. Perovskite-based color camera inspired by human visual cells. Light Sci Appl, 2023, 12: 43

    Article  CAS  Google Scholar 

  20. Li C, Lu J, Zhao Y, et al. Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system. Small, 2019, 15: 1903599

    Article  CAS  Google Scholar 

  21. Hao F, Stoumpos CC, Cao DH, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat Photon, 2014, 8: 489–494

    Article  CAS  Google Scholar 

  22. Xu X, Chueh C, Jing P, et al. High-performance near-IR photodetector using low-bandgap MA0.5FA0.5Pb0.5Sn0.5I3 perovskite. Adv Funct Mater, 2017, 27: 1701053

    Article  Google Scholar 

  23. Ollearo R, Wang J, Dyson MJ, et al. Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation. Nat Commun, 2021, 12: 7277

    Article  CAS  Google Scholar 

  24. Saliba M, Matsui T, Seo JY, et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9: 1989–1997

    Article  CAS  Google Scholar 

  25. Niu G, Li W, Li J, et al. Enhancement of thermal stability for perovskite solar cells through cesium doping. RSC Adv, 2017, 7: 17473–17479

    Article  CAS  Google Scholar 

  26. Wu Y, Wang P, Wang S, et al. Heterojunction engineering for high efficiency cesium formamidinium double-cation lead halide perovskite solar cells. ChemSusChem, 2018, 11: 837–842

    Article  CAS  Google Scholar 

  27. Chen L, Tan YY, Chen ZX, et al. Toward long-term stability: Single-crystal alloys of cesium-containing mixed cation and mixed halide perovskite. J Am Chem Soc, 2019, 141: 1665–1671

    Article  CAS  Google Scholar 

  28. Zhang T, Wu J, Zhang P, et al. High speed and stable solution-processed triple cation perovskite photodetectors. Adv Opt Mater, 2018, 6: 1701341

    Article  Google Scholar 

  29. Adams GR, Eze VO, Carani LB, et al. Synergistic effect of the anti-solvent bath method and improved annealing conditions for high-quality triple cation perovskite thin films. RSC Adv, 2020, 10: 18139–18146

    Article  CAS  Google Scholar 

  30. Zhao Y, Li C, Jiang J, et al. Sensitive and stable tin-lead hybrid perovskite photodetectors enabled by double-sided surface passivation for infrared upconversion detection. Small, 2020, 16: 2001534

    Article  CAS  Google Scholar 

  31. Zhu HL, Choy WCH. Crystallization, properties, and challenges of low-bandgap Sn-Pb binary perovskites. Sol RRL, 2018, 2: 1800146

    Article  Google Scholar 

  32. Zhu HL, Liang Z, Huo Z, et al. Low-bandgap methylammonium-rubidium cation Sn-rich perovskites for efficient ultraviolet-visible-near infrared photodetectors. Adv Funct Mater, 2018, 28: 1706068

    Article  Google Scholar 

  33. Deni H, Muratore DM, Malkin RA. Development of a pulse oximeter analyzer for the developing world. In: Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference. Hoboken: IEEE, 2005, 227–228

    Google Scholar 

  34. Wu X, Cai G. The development of a wearable pulse oximeter sensor and study of the calibration method. J Biomed Eng, 2009, 26: 731–738

    CAS  Google Scholar 

  35. Xu C, Luo S, Wang Y, et al. Bias-selectable Si nanowires/PbS nanocrystalline film n-n heterojunction for NIR/SWIR dual-band photodetection. Adv Funct Mater, 2023, 33: 2214996

    Article  CAS  Google Scholar 

  36. Zhong Y, Hufnagel M, Thelakkat M, et al. Role of PCBM in the suppression of hysteresis in perovskite solar cells. Adv Funct Mater, 2020, 30: 1908920

    Article  CAS  Google Scholar 

  37. Chen R, Long B, Wang S, et al. Efficient and stable perovskite solar cells using bathocuproine bilateral-modified perovskite layers. ACS Appl Mater Interfaces, 2021, 13: 24747–24755

    Article  CAS  Google Scholar 

  38. Shin SJ, Alosaimi G, Choi MJ, et al. Strategic approach for frustrating charge recombination of perovskite solar cells in low-intensity indoor light: Insertion of polar small molecules at the interface of the electron transport layer. ACS Appl Energy Mater, 2022, 5: 13234–13242

    Article  CAS  Google Scholar 

  39. Ding D, Lanzetta L, Liang X, et al. Ultrathin polymethylmethacrylate interlayers boost performance of hybrid tin halide perovskite solar cells. Chem Commun, 2021, 57: 5047–5050

    Article  CAS  Google Scholar 

  40. Zhang T, Ling C, Wang X, et al. Six-arm stellat dendritic-PbS flexible infrared photodetector for intelligent healthcare monitoring. Adv Mater Technologies, 2022, 7: 2200250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52172202), Guangdong Basic and Applied Basic Research Foundation (2023A1515030163 and 2022A1515010049), and the Science and Technology Planning Project of Guangzhou (201605030008).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Lv Y and Cen G designed and engineered the samples; Zhao C and Mai W supervised the project; Lv Y, Cen G and Li W performed the experiments; Lv Y and Cen G wrote the paper with support from Zhao C and Mai W. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Chuanxi Zhao  (赵传熙) or Wenjie Mai  (麦文杰).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Wenjie Mai received his BS degree in physics (2002) from Peking University and his PhD degree in materials science and engineering (2009) from Georgia Institute of Technology. He is now a full professor at Jinan University (JNU). His main research interest includes energy conversion and storage devices, such as supercapacitors, batteries, and nanogenerators.

Supporting information

40843_2023_2613_MOESM1_ESM.pdf

Highly Sensitive Fast-Response Near-Infrared Photodetectors based on Triple Cation Sn-Pb Perovskite for Pulse Oximetry System

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Cen, G., Li, W. et al. Highly sensitive fast-response near-infrared photodetectors based on triple cation Sn-Pb perovskite for pulse oximetry system. Sci. China Mater. 66, 4704–4710 (2023). https://doi.org/10.1007/s40843-023-2613-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2613-5

Keywords

Navigation