Skip to main content
Log in

Controllable heat release of phase-change azobenzenes by optimizing molecular structures for low-temperature energy utilization

通过优化分子结构实现相变偶氮苯的可控热释放用于低温能量利用

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Phase-change azobenzene derivatives can store and release heat upon isomerization. The amount and rate of heat output are affected by the azobenzene crystallization and isomerization, which are in turn governed by molecular structure and interactions. Thus, optimizing molecular structure is a promising method to control heat release at different temperatures. Herein, we prepared three asymmetric alkoxy-substituted azobenzene molecules (s-Azo) with similar molecular weights but different substituents to investigate the trade-off between crystallization and isomerization. Temperature-dependent crystallizability and photo-induced iso-merization kinetics of all s-Azo were studied. Results indicate that n-alkoxy substitution endows s-Azo with high crystallization enthalpy (ΔHCE) due to strong van der Waals forces, but steric hindrance lowers the degree of isomerization. Short branched alkyl substitution reduces intermolecular interactions and favors the isomerization, which leads to an increase in isomerization enthalpy (ΔHIE) but decreases ΔHCE. The n-alkoxy-substituted s-Azo exhibits photoinduced high-energy heat release with an enthalpy of up to 343.3 J g−1 and a power density of 413 W kg−1 at a wide temperature range from −60.49 to 34.76°C. The synchronous heat release in a distributed energy utilization annular device achieves a temperature rise of 6.3°C at a low temperature environment (−5°C). Results demonstrate that phase-change azobenzene derivatives can be designed and developed for ideal energy-storage systems by optimizing molecular structures and interactions.

摘要

相变偶氮苯衍生物可以基于异构化储存和释放热量. 热量输出量和速率受偶氮苯结晶和异构化的影响, 同时也受分子结构和相互作用的制约. 因此, 优化分子结构是控制不同温度下热量释放的一种有效方式. 在此, 我们制备了三个不对称的烷氧基取代的偶氮苯分子(s-Azo), 其分子量相似但取代基不同, 以研究结晶和异构化之间的权衡. 我们研究了s-Azo的温控结晶性和光诱导的异构化动力学. 结果表明, 由于较强的范德华力, 正烷氧基取代使s-Azo具有较高的结晶焓(ΔHCE), 但立体阻碍降低了异构化程度. 短烷基支化降低了分子相互作用, 有利 于异构化, 使异构化焓(ΔHIE)增加, 但降低了ΔHCE. 正烷氧基取代的s-Azo在−60.49至34.76°C的宽温度范围内表现出光诱导的高能热释放, 焓值高达343.3 J g−1, 功率密度为413 W kg−1. 同步放热使分布式能量利 用的环形装置在低温环境(−5°C)下实现了6.3°C的温升. 结果表明, 相变 偶氮苯衍生物可以通过优化分子结构和相互作用应用于理想的储能 系统.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moth-Poulsen K, Ćoso D, Börjesson K, et al. Molecular solar thermal (MOST) energy storage and release system. Energy Environ Sci, 2012, 5: 8534–8537

    Article  CAS  Google Scholar 

  2. Wang Z, Erhart P, Li T, et al. Storing energy with molecular photo-isomers. Joule, 2021, 5: 3116–3136

    Article  CAS  Google Scholar 

  3. Nielsen MB, Ree N, Mikkelsen KV, et al. Tuning the dihydroazulene-vinylheptafulvene couple for storage of solar energy. Russ Chem Rev, 2020, 89: 573–586

    Article  CAS  Google Scholar 

  4. Mansø M, Petersen AU, Wang Z, et al. Molecular solar thermal energy storage in photoswitch oligomers increases energy densities and storage times. Nat Commun, 2018, 9: 1945

    Article  Google Scholar 

  5. Kwaria D, McGehee K, Liu S, et al. Visible-light-photomeltable azo-benzenes as solar thermal fuels. ACS Appl Opt Mater, 2023, 1: 633–639

    Article  CAS  Google Scholar 

  6. Abedi M, Pápai M, Mikkelsen KV, et al. Mechanism of photoinduced dihydroazulene ring-opening reaction. J Phys Chem Lett, 2019, 10: 3944–3949

    Article  CAS  Google Scholar 

  7. Orrego-Hernández J, Dreos A, Moth-Poulsen K. Engineering of nor-bornadiene/quadricyclane photoswitches for molecular solar thermal energy storage applications. Acc Chem Res, 2020, 53: 1478–1487

    Article  Google Scholar 

  8. Wang ST, Tan P, Weng WQ, et al. Photoresponsive metal-organic polyhedra in metal-organic frameworks: Achieving “real” responsiveness. Sci China Mater, 2023, 66: 2726–2732

    Article  CAS  Google Scholar 

  9. Merino E. Synthesis of azobenzenes: The coloured pieces of molecular materials. Chem Soc Rev, 2011, 40: 3835–3853

    Article  CAS  Google Scholar 

  10. Wen ZB, Snap RF, Raquez JM, et al. Unique two-way free-standing thermo- and photo-responsive shape memory azobenzene-containing polyurethane liquid crystal network. Sci China Mater, 2020, 63: 2590–2598

    Article  CAS  Google Scholar 

  11. Fuentes E, Gerth M, Berrocal JA, et al. An azobenzene-based single-component supramolecular polymer responsive to multiple stimuli in water. J Am Chem Soc, 2020, 142: 10069–10078

    Article  CAS  Google Scholar 

  12. Saydjari AK, Weis P, Wu S. Spanning the solar spectrum: Azopolymer solar thermal fuels for simultaneous UV and visible light storage. Adv Energy Mater, 2017, 7: 1601622

    Article  Google Scholar 

  13. Gao J, Feng Y, Fang W, et al. Co-harvest phase-change enthalpy and isomerization energy for high-energy heat output by controlling crystallization of alkyl-grafted azobenzene molecules. Energy Environ Mater, 2023, e12607

  14. Lv JA, Liu Y, Wei J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature, 2016, 537: 179–184

    Article  CAS  Google Scholar 

  15. Xu WC, Sun S, Wu S. Photoinduced reversible solid-to-liquid transitions for photoswitchable materials. Angew Chem Int Ed, 2019, 58: 9712–9740

    Article  CAS  Google Scholar 

  16. Bandara HMD, Burdette SC. Photoisomerization in different classes of azobenzene. Chem Soc Rev, 2012, 41: 1809–1825

    Article  CAS  Google Scholar 

  17. Akiyama H, Yoshida M. Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo-arms. Adv Mater, 2012, 24: 2353–2356

    Article  CAS  Google Scholar 

  18. Knothe G, Dunn RO. A comprehensive evaluation of the melting points of fatty acids and esters determined by differential scanning calorimetry. J Americ Oil Chem Soc, 2009, 86: 843–856

    Article  CAS  Google Scholar 

  19. Xu X, Wang G. Molecular solar thermal systems towards phase change and visible light photon energy storage. Small, 2022, 18: 2107473

    Article  CAS  Google Scholar 

  20. Griffiths K, Halcovitch NR, Griffin JM. Crystalline azobenzene composites as photochemical phase-change materials. New J Chem, 2022, 46: 4057–4061

    Article  CAS  Google Scholar 

  21. Soulé ER. Thermodynamic model of phase transitions induced by cis-trans thermal- and photo-isomerization of azobenzenes. Chem Phys Lett, 2022, 794: 139503

    Article  Google Scholar 

  22. Zhong HY, Chen L, Ding XM, et al. Physio- and chemo-dual cross-linking toward thermoand photo-response of azobenzene-containing liquid crystalline polyester. Sci China Mater, 2018, 61: 1225–1236

    Article  CAS  Google Scholar 

  23. Cho EN, Zhitomirsky D, Han GGD, et al. Molecularly engineered azobenzene derivatives for high energy density solid-state solar thermal fuels. ACS Appl Mater Interfaces, 2017, 9: 8679–8687

    Article  CAS  Google Scholar 

  24. Hu Z, Zhang D, Yu L, et al. Light-triggered C60 release from a graphene/cyclodextrin nanoplatform for the protection of cytotoxicity induced by nitric oxide. J Mater Chem B, 2018, 6: 518–526

    Article  CAS  Google Scholar 

  25. Sheng S, Zhu Z, Wang Z, et al. Bioinspired solar anti-icing/de-icing surfaces based on phase-change materials. Sci China Mater, 2022, 65: 1369–1376

    Article  CAS  Google Scholar 

  26. Kolpak AM, Grossman JC. Azobenzene-functionalized carbon nano-tubes as high-energy density solar thermal fuels. Nano Lett, 2011, 11: 3156–3162

    Article  CAS  Google Scholar 

  27. Gerkman MA, Gibson RSL, Calbo J, et al. Arylazopyrazoles for long-term thermal energy storage and optically triggered heat release below 0°C. J Am Chem Soc, 2020, 142: 8688–8695

    Article  Google Scholar 

  28. Norikane Y, Uchida E, Tanaka S, et al. Photoinduced crystal-to-liquid phase transitions of azobenzene derivatives and their application in photolithography processes through a solid-liquid patterning. Org Lett, 2014, 16: 5012–5015

    Article  CAS  Google Scholar 

  29. Hu J, Li X, Ni Y, et al. A programmable and biomimetic photo-actuator: A composite of a photo-liquefiable azobenzene derivative and commercial plastic film. J Mater Chem C, 2018, 6: 10815–10821

    Article  CAS  Google Scholar 

  30. Han GGD, Li H, Grossman JC. Optically-controlled long-term storage and release of thermal energy in phase-change materials. Nat Commun, 2017, 8: 1446

    Article  Google Scholar 

  31. Ishiba K, Morikawa M, Chikara C, et al. Photoliquefiable ionic crystals: A phase crossover approach for photon energy storage materials with functional multiplicity. Angew Chem Int Ed, 2015, 54: 1532–1536

    Article  CAS  Google Scholar 

  32. Liu Y, Wang H, Liu P, et al. Azobenzene-based macrocyclic arenes: Synthesis, crystal structures, and light-controlled molecular encapsulation and release. Angew Chem, 2021, 133: 5830–5834

    Article  Google Scholar 

  33. Qiu Q, Shi Y, Han GGD. Solar energy conversion and storage by photoswitchable organic materials in solution, liquid, solid, and changing phases. J Mater Chem C, 2021, 9: 11444–11463

    Article  CAS  Google Scholar 

  34. Yoshida Z. New molecular energy storage systems. J Photo Chem, 1985, 29: 27–40

    Article  CAS  Google Scholar 

  35. Martins GF, Cardoso BP, Galamba N, et al. Solar-thermal fuels and the role of carbon nanomaterials: A perspective with emphasis on the azobenzene system. Energy Fuels, 2023, 37: 1731–1756

    Article  CAS  Google Scholar 

  36. Shangguan Z, Sun W, Zhang ZY, et al. A rechargeable molecular solar thermal system below 0°C. Chem Sci, 2022, 13: 6950–6958

    Article  CAS  Google Scholar 

  37. Weston CE, Richardson RD, Haycock PR, et al. Arylazopyrazoles: Azoheteroarene photoswitches offering quantitative isomerization and long thermal half-lives. J Am Chem Soc, 2014, 136: 11878–11881

    Article  CAS  Google Scholar 

  38. Zhang ZY, He Y, Wang Z, et al. Photochemical phase transitions enable coharvesting of photon energy and ambient heat for energetic molecular solar thermal batteries that upgrade thermal energy. J Am Chem Soc, 2020, 142: 12256–12264

    Article  CAS  Google Scholar 

  39. Hu J, Huang S, Yu M, et al. Flexible solar thermal fuel devices: Composites of fabric and a photoliquefiable azobenzene derivative. Adv Energy Mater, 2019, 9: 1901363

    Article  CAS  Google Scholar 

  40. Luo L, Lyu X, Tang Z, et al. Thin-film self-assembly of block copolymers containing an azobenzene-based liquid crystalline polymer and a poly(ionic liquid). Macromolecules, 2020, 53: 9619–9630

    Article  CAS  Google Scholar 

  41. Chi H, Mya KY, Lin T, et al. Thermally stable azobenzene dyes through hybridization with POSS. New J Chem, 2013, 37: 735–742

    Article  CAS  Google Scholar 

  42. Jerca FA, Jerca VV, Hoogenboom R. Advances and opportunities in the exciting world of azobenzenes. Nat Rev Chem, 2022, 6: 51–69

    Article  Google Scholar 

  43. Cheng HB, Zhang S, Qi J, et al. Advances in application of azobenzene as a trigger in biomedicine: Molecular design and spontaneous assembly. Adv Mater, 2021, 33: 2007290

    Article  CAS  Google Scholar 

  44. Han GD, Park SS, Liu Y, et al. Photon energy storage materials with high energy densities based on diacetylene-azobenzene derivatives. J Mater Chem A, 2016, 4: 16157–16165

    Article  CAS  Google Scholar 

  45. Bléger D, Schwarz J, Brouwer AM, et al. o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way iso-merization with visible light. J Am Chem Soc, 2012, 134: 20597–20600

    Article  Google Scholar 

  46. Dang T, Dong D, Zhang J, et al. Thiazolylazopyrazoles as nonsymmetric bis-heteroaryl azo switches: High-yield visible-light photo-isomerization and increased Z-isomer stability by o-carbonylation. Angew Chem Int Ed, 2023, 62: e202301992

    Article  CAS  Google Scholar 

  47. Kant K, Shukla A, Sharma A, et al. Melting and solidification behaviour of phase change materials with cyclic heating and cooling. J Energy Storage, 2018, 15: 274–282

    Article  Google Scholar 

  48. Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci, 2014, 65: 67–123

    Article  CAS  Google Scholar 

  49. Zhang Q, Xia T, Zhang Q, et al. Biomass homogeneity reinforced carbon aerogels derived functional phase-change materials for solar-thermal energy conversion and storage. Energy Environ Mater, 2023, 6: e12264

    Article  CAS  Google Scholar 

  50. Hao Y, Huang S, Guo Y, et al. Photoinduced multi-directional deformation of azobenzene molecular crystals. J Mater Chem C, 2019, 7: 503–508

    Article  CAS  Google Scholar 

  51. Yao J, Sun L, Xiao Y, et al. Impact of surface free energy on two-dimensional crystallization. Sci China Mater, 2023, 66: 1511–1517

    Article  CAS  Google Scholar 

  52. Beharry AA, Woolley GA. Azobenzene photoswitches for biomolecules. Chem Soc Rev, 2011, 40: 4422–4437

    Article  CAS  Google Scholar 

  53. Dias AR, Minas Da Piedade ME, Martinho Simöes JA, et al. Enthalpies of formation of cis-azobenzene and trans-azobenzene. J Chem Ther-moDyn, 1992, 24: 439–447

    Article  CAS  Google Scholar 

  54. Wang H, Feng Y, Yu H, et al. Utilisation of photo-thermal energy and bond enthalpy based on optically triggered formation and dissociation of coordination bonds. Nano Energy, 2021, 89: 106401

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2022YFB3805702), the State Key Program of National Natural Science Foundation of China (51973152 and 52130303), and the Science Foundation for Distinguished Young Scholars in Tianjin (19JCJQJC61700). The authors would like to thank Dr. Joseph Elliot at the University of Kansas for her assistance with English language and grammatical editing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Feng W and Feng Y conceived the project and supervised the research. Yang Q performed the synthesis and characterization of s-Azo. Ge J, Qin M, Wang H, Yang X, Zhou X and Zhang B helped in the analysis of the results. Yang Q wrote the manuscript. All authors discussed the results and revised the manuscript.

Corresponding authors

Correspondence to Yiyu Feng  (冯奕钰) or Wei Feng  (封伟).

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Supplementary information

Supporting data are available in the online version of the paper.

Qingbin Yang is now pursuing his MS degree under the supervision of Prof. Wei Feng at the School of Materials Science and Engineering, Tianjin University. His research interests include the synthesis, mechanism and applications of photo-responsive azobenzene-based phase change materials.

Yiyu Feng is a professor at the School of Materials Science and Engineering, Tianjin University. He obtained his PhD degree from Tianjin University in 2009 and held an academic position at Tianjin University in 2009. Currently, his research is focused on solar-thermal conversion and thermal interfacial materials and composites, as well as their applications in heat-control systems.

Wei Feng is a professor at the School of Materials Science and Engineering, Tianjin University. He obtained his PhD degree from Xi’an Jiaotong University (China) in 2000. Then, he worked at Osaka University and Tsinghua University as a JSPS fellow and postdoctoral researcher, respectively. In 2004, he became a full professor at Tianjin University. His research interests include photoresponsive organic molecules and their derivatives, thermal conductive and high-strength carbon-based composites, and new fuorinated carbon materials and functional polymers.

Supplementary Information

40843_2023_2477_MOESM1_ESM.pdf

Controllable Heat Release of Phase-Change Azobenzenes by Optimizing Molecular Structures for Low-temperature Energy Utilization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Ge, J., Qin, M. et al. Controllable heat release of phase-change azobenzenes by optimizing molecular structures for low-temperature energy utilization. Sci. China Mater. 66, 3609–3620 (2023). https://doi.org/10.1007/s40843-023-2477-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2477-x

Keywords

Navigation