Skip to main content
Log in

Remarkable phase-matchable second-harmonic generation realized by strong polarities of [PbSe3] and [GaSe4] functional motifs in PbGa4Se7

化合物PbGa4Se7中[PbSe3]和[GaSe4]功能基元的强极化实现高的相位匹配二次谐波效应

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Strong second-harmonic generation (SHG) and phase-matchable capability at specific transmittance windows are crucial to the real application of nonlinear optical crystals. Herein, an efficient strategy of introducing Pb2+ with stereochemically active lone-pair electrons into non-phase-match-able Ga2Se3via enhancing the anisotropy microstructure is first applied to meet phase-matchable SHG intensity requirements, offering a selenide, namely, PbGa4Se7, which is designed and synthesized with a diamond-like anionic framework, where Pb2+ cations reside in a parallel arrangement. As expected, PbGa4Se7 possesses a large SHG coefficient of 3.3 times that of AgGaS2 under the incident laser of 1910 nm. Moreover, PbGa4Se7 displays a high laser-induced damage threshold of 7.0 times that of AgGaS2 at 2090 nm, which originates from the low anisotropy of thermal expansion coefficient (0.36) and suitable optical band gap (2.1 eV). Theoretical calculations demonstrate that the considerable phase-matchable SHG response of PbGa4Se7 can be attributed to the synergies of tetrahedral GaSe4 and pyramid PbSe3 microstructural blocks with additional anisotropy and polarizability.

摘要

二次谐波效应和相位匹配能力对于二阶非线性光学晶体的实际应用至关重要. 在本工作中, 我们通过将具有立体化学活性电子对的Pb2+引入非相位匹配的Ga2Se3, 增强其各向异性和二阶超极化率. 基于以上策略, 我们制备了一种硒化物PbGa4Se7, 其晶体结构由类金刚石阴离子骨架和插入到间隙中的Pb2+组成. 在1910 nm的激光照射下,PbGa4Se7具有大的二次谐波系数(3.3 × AgGaS2); 同时, 其具有低的热膨胀系数各向异性(0.5)和合适的光学带隙(2.1 eV), 在2090 nm激光照射下, 表现出高的激光诱导损伤阈值(7.0 × AgGaS2). PbGa4Se7的相位匹配能力和强二次谐波效应可归因于非线性光学功能基元(四面体GaSe4和金字塔PbSe3结构单元)的协同作用产生了额外的各向异性和极化率.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou J, Wu H, Yu H, et al. BaF2TeF2(OH)2: A UV nonlinear optical fluorotellurite material designed by band-gap engineering. J Am Chem Soc, 2020, 142: 4616–4620

    CAS  Google Scholar 

  2. Jiang C, Jiang X, Wu C, et al. Isoreticular design of KTiOPO4-like deep-ultraviolet transparent materials exhibiting strong second-harmonic generation. J Am Chem Soc, 2022, 144: 20394–20399

    CAS  Google Scholar 

  3. Huang X, Yang SH, Li XH, et al. Eu2P2S6: The first rare-earth chalcogenophosphate exhibiting large second-harmonic generation response and high laser-induced damage threshold. Angew Chem Int Ed, 2022, 61: e202206791

    CAS  Google Scholar 

  4. Xia M, Li F, Mutailipu M, et al. Discovery of first magnesium fluorooxoborate with stable fluorine terminated framework for deep-UV nonlinear optical application. Angew Chem Int Ed, 2021, 60: 14650–14656

    CAS  Google Scholar 

  5. Mutailipu M, Li F, Jin C, et al. Strong nonlinearity induced by coaxial alignment of polar chain and dense [BO3] units in CaZn2(BO3)2. Angew Chem Int Ed, 2022, 61: e202202096

    CAS  Google Scholar 

  6. Chen C, Wu Y, Jiang A, et al. New nonlinear-optical crystal: LiB3O5. J Opt Soc Am B, 1989, 6: 616–621

    CAS  Google Scholar 

  7. Chen C, Wu B, Jiang A, et al. A new-type ultraviolet SHG crystal—β-BaB2O4. Sci China Ser B, 1985, 28: 235–243

    Google Scholar 

  8. Haussühl S. Elastische und thermoelastische eigenschaften von KH2PO4, KH2AsO4, NH4H2PO4, NH4H2AsO4 und RbH2PO4. Z für Kristallographie, 1965, 122: 311–314

    Google Scholar 

  9. Tordjman PI, Masse E, Guitel JC. Structure cristalline du monophosphate KTiPO5. Z für Kristallographie, 1974, 139: 103–115

    CAS  Google Scholar 

  10. Fan YX, Eckardt RC, Byer RL, et al. AgGaS2 infrared parametric oscillator. Appl Phys Lett, 1984, 45: 313–315

    CAS  Google Scholar 

  11. Singh NB, Hopkins RH, Feichtner JD. Effect of annealing on the optical quality of AgGaS2 and AgGaSe2 single crystals. J Mater Sci, 1986, 21: 837–841

    CAS  Google Scholar 

  12. Boyd GD, Buehler E, Storz FG. Linear and nonlinear optical properties of ZnGeP2 and CdSe. Appl Phys Lett, 1971, 18: 301–304

    CAS  Google Scholar 

  13. Chen J, Lin C, Zhao D, et al. Anionic aliovalent substitution from structure models of ZnS: Novel defect diamond-like halopnictide infrared nonlinear optical materials with wide band gaps and large SHG effects. Angew Chem Int Ed, 2020, 59: 23549–23553

    CAS  Google Scholar 

  14. Ok KM, Chi EO, Halasyamani PS. Bulk characterization methods for non-centrosymmetric materials: Second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem Soc Rev, 2006, 35: 710–717

    CAS  Google Scholar 

  15. Liu QQ, Liu X, Wu LM, et al. SrZnGeS4: A dual-waveband nonlinear optical material with a transparency spanning UV/vis and far-IR spectral regions. Angew Chem Int Ed, 2022, 61: e202205587

    CAS  Google Scholar 

  16. Liu BW, Zeng HY, Jiang XM, et al. [A3X][Ga3PS8] (A = K, Rb; X = Cl, Br): Promising IR non-linear optical materials exhibiting concurrently strong second-harmonic generation and high laser induced damage thresholds. Chem Sci, 2016, 7: 6273–6277

    CAS  Google Scholar 

  17. Yu P, Zhou LJ, Chen L. Noncentrosymmetric inorganic open-framework chalcohalides with strong middle IR SHG and red emission: Ba3AGa5Se10Cl2 (A = Cs, Rb, K). J Am Chem Soc, 2012, 134: 2227–2235

    CAS  Google Scholar 

  18. Jin C, Shi X, Zeng H, et al. Hydroxyfluorooxoborate Na[B3O3F2-(OH)2]·[B(OH)3]: Optimizing the optical anisotropy with heteroanionic units for deep ultraviolet birefringent crystals. Angew Chem Int Ed, 2021, 60: 20469–20475

    CAS  Google Scholar 

  19. Guo SP, Cheng X, Sun ZD, et al. Large second harmonic generation (SHG) effect and high laser-induced damage threshold (LIDT) observed coexisting in gallium selenide. Angew Chem Int Ed, 2019, 58: 8087–8091

    CAS  Google Scholar 

  20. Guo J, Tudi A, Han S, et al. Sn2B5O9Cl: A material with large birefringence enhancement activated prepared via alkaline-earth-metal substitution by tin. Angew Chem Int Ed, 2019, 58: 17675–17678

    CAS  Google Scholar 

  21. Jiang XM, Deng S, Whangbo MH, et al. Material research from the viewpoint of functional motifs. Natl Sci Rev, 2022, 9: nwac017

    CAS  Google Scholar 

  22. Zhou W, Liu W, Guo SP. (Na0.74Ag1.26)BaSnS4: A new AgGaS2-type nonlinear optical sulfide with a wide band gap and high laser induced damage threshold. Chem Eur J, 2022, 28: e202202063

    CAS  Google Scholar 

  23. Zou G, Lin C, Jo H, et al. Pb2BO3Cl: A tailor-made polar lead borate chloride with very strong second harmonic generation. Angew Chem Int Ed, 2016, 55: 12078–12082

    CAS  Google Scholar 

  24. Guo SP, Chi Y, Xue HG. SnI4-(S8)2: A novel adduct-type infrared second-order nonlinear optical crystal. Angew Chem Int Ed, 2018, 57: 11540–11543

    CAS  Google Scholar 

  25. Jing Q, Yang Z, Pan S, et al. Contribution of lone-pairs to birefringence affected by the Pb(II) coordination environment: A DFT investigation. Phys Chem Chem Phys, 2015, 17: 21968–21973

    CAS  Google Scholar 

  26. Chen ZX, Liu W, Guo SP. A review of structures and physical properties of rare earth chalcophosphates. Coord Chem Rev, 2023, 474: 214870

    CAS  Google Scholar 

  27. Sheldrick GM. A short history of SHELX. Acta Crystlogr Found Crystlogr, 2008, 64: 112–122

    CAS  Google Scholar 

  28. Spek AL. Single-crystal structure validation with the program PLATON. J Appl Crystlogr, 2003, 36: 7–13

    CAS  Google Scholar 

  29. Hapke B. Reflectance methods and applications. In: Lindon JC, Tranter GE, Koppenaal DW (eds). Secondary Reflectance Methods and Applications. Amsterdam: Elsevier, 2017, 931–935

    Google Scholar 

  30. Kurtz SK, Perry TT. A powder technique for the evaluation of nonlinear optical materials. J Appl Phys, 1968, 39: 3798–3813

    CAS  Google Scholar 

  31. Baroni S, de Gironcoli S, dal Corso A, et al. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys, 2001, 73: 515–562

    CAS  Google Scholar 

  32. Rigan MY. Preparation and some properties of high-purity PbGa2Se4. Inorg Mater, 2005, 41: 65–68

    CAS  Google Scholar 

  33. Sharma S, Ambrosch-Draxl C. Second-harmonic optical response from first principles. Phys Scripta, 2004, T109: 128

    CAS  Google Scholar 

  34. Sun CF, Hu CL, Xu X, et al. Explorations of new second-order nonlinear optical materials in the potassium vanadyl iodate system. J Am Chem Soc, 2011, 133: 5561–5572

    CAS  Google Scholar 

  35. Lin X, Guo Y, Ye N. BaGa2GeX6(X = S, Se): New mid-IR nonlinear optical crystals with large band gaps. J Solid State Chem, 2012, 195: 172–177

    CAS  Google Scholar 

  36. Lin H, Chen L, Zhou LJ, et al. Functionalization based on the substitutional flexibility: Strong middle IR nonlinear optical selenides AXII4XIII5Se12. J Am Chem Soc, 2013, 135: 12914–12921

    CAS  Google Scholar 

  37. Iglesias JE, Steinfink H. Ternary chalcogenide compounds AB2X4: The crystal structures of SiPb2S4 and SiPb2Se4. J Solid State Chem, 1973, 6: 93–98

    CAS  Google Scholar 

  38. Derakhshan S, Assoud A, Taylor NJ, et al. Crystal and electronic structures and physical properties of two semiconductors: Pb4Sb6Se13 and Pb6Sb6Se17. Intermetallics, 2006, 14: 198–207

    CAS  Google Scholar 

  39. Duan RH, Yu JS, Lin H, et al. Pb5Ga6ZnS15: A noncentrosymmetric framework with chains of T2-supertetrahedra. Dalton Trans, 2016, 45: 12288–12291

    CAS  Google Scholar 

  40. Chen WF, Liu BW, Jiang XM, et al. Infrared nonlinear optical performances of a new sulfide β-PbGa2S4. J Alloys Compd, 2022, 905: 164090

    CAS  Google Scholar 

  41. Wu C, Wu T, Jiang X, et al. Large second-harmonic response and giant birefringence of CeF2(SO4) induced by highly polarizable polyhedra. J Am Chem Soc, 2021, 143: 4138–4142

    CAS  Google Scholar 

  42. Liu BW, Jiang XM, Li BX, et al. Li[LiCs2Cl][Ga3S6]: A nanoporous framework of GaS4 tetrahedra with excellent nonlinear optical performance. Angew Chem Int Ed, 2020, 59: 4856–4859

    CAS  Google Scholar 

  43. Lin X, Zhang G, Ye N. Growth and characterization of BaGa4S7: A new crystal for mid-IR nonlinear optics. Cryst Growth Des, 2009, 9: 1186–1189

    CAS  Google Scholar 

  44. Yao J, Mei D, Bai L, et al. BaGa4Se7: A new congruent-melting IR nonlinear optical material. Inorg Chem, 2010, 49: 9212–9216

    CAS  Google Scholar 

  45. Luo ZZ, Lin CS, Cui HH, et al. SHG materials SnGa4Q7 (Q = S, Se) appearing with large conversion efficiencies, high damage thresholds, and wide transparencies in the mid-infrared region. Chem Mater, 2014, 26: 2743–2749

    CAS  Google Scholar 

  46. Li X, Kang L, Li C, et al. PbGa4S7: A wide-gap nonlinear optical material. J Mater Chem C, 2015, 3: 3060–3067

    CAS  Google Scholar 

  47. Chen YK, Chen MC, Zhou LJ, et al. Syntheses, structures, and nonlinear optical properties of quaternary chalcogenides: Pb4Ga4GeQ12 (Q = S, Se). Inorg Chem, 2013, 52: 8334–8341

    CAS  Google Scholar 

  48. Wang J, Wu H, Yu H, et al. Pb4SeBr6: A congruently melting mid-infrared nonlinear optical material with excellent comprehensive performance. Adv Opt Mater, 2022, 10: 2102673

    CAS  Google Scholar 

  49. Fedorchuk AO, Parasyuk OV, Cherniushok O, et al. PbGa2GeS6 crystal as a novel nonlinear optical material: Band structure aspects. J Alloys Compd, 2018, 740: 294–304

    CAS  Google Scholar 

  50. Kleinman DA. Nonlinear dielectric polarization in optical media. Phys Rev, 1962, 126: 1977–1979

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21827813, 21921001, 22175172, 22075283, 92161125, and U21A20508) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (2020303 and 2021300).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zheng ZX performed the experiments, data analyses, and manuscript writing; Xie CH and Zhang YP offered some advice on the manuscript writing. Qiu ZX performed the theoretical analyses; Liu BW and Guo GC guided and supervised the experiments, and revised the paper. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Bin-Wen Liu  (刘彬文) or Guo-Cong Guo  (郭国聪).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Zhe-Xiong Zheng received his BE degree of chemical technology from Xiamen University in 2020. He is currently an MS student and focuses on nonlinear optical materials at ShanghaiTech University.

Bin-Wen Liu received his BE degree from Hunan University in 2010 and PhD degree in inorganic chemistry from Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences in 2016. Since 2019, he has been working as an associate professor at Fujian Institute of Research on the Structure of Matter. His current research interests include solid-state inorganic chemistry and nonlinear optical materials.

Guo-Cong Guo received his BS degree from Xiamen University in 1986 and PhD degree from The Chinese University of Hong Kong in 1999. Since 2000, he has been working as a full professor at Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. His current research interests include inorganic-organic hybrid photofunctional materials, infrared nonlinear optical materials, and catalytic materials.

Supporting Information

40843_2022_2417_MOESM1_ESM.pdf

Remarkable Phase-Matchable Second-Harmonic Generation Realized by Strong Polarities of [PbSe3] and [GaSe4] Functional Motifs in PbGa4Se7

checkCIF/PLATON report

Supplementary material, approximately 131 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, ZX., Qiu, ZX., Xie, CH. et al. Remarkable phase-matchable second-harmonic generation realized by strong polarities of [PbSe3] and [GaSe4] functional motifs in PbGa4Se7. Sci. China Mater. 66, 2795–2802 (2023). https://doi.org/10.1007/s40843-022-2417-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2417-2

Keywords

Navigation