Skip to main content
Log in

Divergent interfacial behaviors of homo-/hetero-phase boundaries in a dual-phase eutectic high-entropy alloy

双相共晶高熵合金中迥异的同/异相界面行为

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The interfacial structures and behaviors are critical in determining the material properties. Our study aims to investigate such unique interfacial structures and behaviors in multiphase systems involving complex compositions. Herein, we report the divergent interfacial behaviors of the L12–L12, B2–B2, and L12–B2 boundaries prepared via the bonding of AlCoCrFeNi2.1 eutectic high-entropy alloys (HEAs). Specifically, interfacial dynamic recrystallization (DRX) occurs in the L12–L12 boundary owing to the thermostrain-induced grain boundary evolution. In contrast, the bonding of the B2–B2 boundary may be realized by interface diffusion, and no evident DRX occurs owing to the small interfacial shear strain. The DRX grains only developed on the L12 side in the L12–B2 boundary because of the difference in the intrinsic structural traits between L12 and B2. The diffusion of elements contributed to the bonding of this dissimilar boundary. Moreover, a strain-induced B2II precipitation phenomenon surrounding the bonding interface was revealed because of the high defect-precipitation sensitivity of HEAs. The B2II particle precipitation depleted the Al and Ni within the matrix, leading to L12 disordering. The Zener pinning effect exerted by B2II precipitates was quantitatively evaluated by calculating the corresponding limited grain radius RL = 1.8 µm. This pinning effect of B2II precipitates and the sluggish diffusion effect may induce temperature-dependent DRX behaviors of the L12–L12 boundary. This study reveals the understanding of the unique interfacial behaviors of multiphase HEAs and provides new insights into the effects of multiple phases, complex composition, and interfacial precipitation on interfacial evolution.

摘要

界面的结构和行为对材料的性能具有重要的影响. 本文旨在研究复杂成分多相体系材料中这些独特的界面结构和行为. 我们报道了通过连接AlCoCrFeNi2.1共晶高熵合金所获得的L12–L12, B2–B2, L12–B2三种界面迥异的界面行为. 具体是, 由于热-应变诱导的晶界演化, 在L12–L12界面附近出现了明显的界面动态再结晶. 相反, 由于极少的界面应变, B2–B2界面几乎没有发生动态再结晶, 其连接可能是由于扩散引起的. 由于L12相和B2 相本征的结构差异, 在L12–B2界面处只在L12 相侧发生了动态再结晶. 这类异质界面的连接是由于界面元素的扩散. 另外, 由于高熵合金高的缺陷-析出敏感性, 在连接界面附近出现了应变诱导析出的B2II相. B2II相的析出消耗了基体中的Ni, Al元素, 造成了L12相的无序化. 通过定量计算相应晶粒的极限尺寸评估了这些B2II相带来的Zener钉扎效应. 这种B2II相的钉扎作用及元素的缓慢扩散效应可能导致了L12–L12界面温度依赖的动态再结晶行为. 本研究有助于理解多相高熵合金独特的界面行为, 并为多相、复杂成分、界面析出等因素对界面演化的影响提供了新的认识.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng-A, 2004, 375–377: 213–218

    Article  Google Scholar 

  2. Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303

    Article  CAS  Google Scholar 

  3. Zou Y, Maiti S, Steurer W, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater, 2014, 65: 85–97

    Article  CAS  Google Scholar 

  4. Yao MJ, Pradeep KG, Tasan CC, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Mater, 2014, 72–73: 5–8

    Article  Google Scholar 

  5. Chen YY, Hong UT, Yeh JW, et al. Selected corrosion behaviors of a Cu0.5NiAlCoCrFeSi bulk glassy alloy in 288°C high-purity water. Scripta Mater, 2006, 54: 1997–2001

    Article  CAS  Google Scholar 

  6. Wang Y, Yang Y, Yang H, et al. Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater Chem Phys, 2018, 210: 233–239

    Article  CAS  Google Scholar 

  7. Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345: 1153–1158

    Article  CAS  Google Scholar 

  8. Zhang L, Zhou Y, Jin X, et al. The microstructure and high-temperature properties of novel nano precipitation-hardened face centered cubic high-entropy superalloys. Scripta Mater, 2018, 146: 226–230

    Article  CAS  Google Scholar 

  9. George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater, 2019, 4: 515–534

    Article  CAS  Google Scholar 

  10. Senkov ON, Wilks GB, Miracle DB, et al. Refractory high-entropy alloys. Intermetallics, 2010, 18: 1758–1765

    Article  CAS  Google Scholar 

  11. Wang F, Zhang Y, Chen G, et al. Tensile and compressive mechanical behavior of a CoCrCuFeNiAl0.5 high entropy alloy. Int J Mod Phys B, 2009, 23: 1254–1259

    Article  CAS  Google Scholar 

  12. Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater, 2013, 61: 5743–5755

    Article  CAS  Google Scholar 

  13. Chen R, Qin G, Zheng H, et al. Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Mater, 2018, 144: 129–137

    Article  CAS  Google Scholar 

  14. Ye YF, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects. Mater Today, 2016, 19: 349–362

    Article  CAS  Google Scholar 

  15. Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci Rep, 2014, 4: 6200

    Article  CAS  Google Scholar 

  16. Sun S, Tian Y, Zhang Z. Strengthening and toughening mechanisms of precipitation-hardened Fe53Mn15Ni15Cr10Al4Ti2C1 high-entropy alloy. Acta Metallurgica Sinica, 2022, 58: 54–66

    CAS  Google Scholar 

  17. Wang Z, Lu W, An F, et al. High stress twinning in a compositionally complex steel of very high stacking fault energy. Nat Commun, 2022, 13: 3598

    Article  CAS  Google Scholar 

  18. Wang L, Wang L, Zhou S, et al. Precipitation and micromechanical behavior of the coherent ordered nanoprecipitation strengthened Al-Cr-Fe-Ni-V high entropy alloy. Acta Mater, 2021, 216: 117121

    Article  CAS  Google Scholar 

  19. Yang T, Zhao YL, Fan L, et al. Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multi-component high-entropy alloys. Acta Mater, 2020, 189: 47–59

    Article  CAS  Google Scholar 

  20. Li J, Meng X, Wan L, et al. Welding of high entropy alloys: Progresses, challenges and perspectives. J Manufact Proc, 2021, 68: 293–331

    Article  Google Scholar 

  21. Nam H, Park S, Park N, et al. Weldability of cast CoCrFeMnNi high-entropy alloys using various filler metals for cryogenic applications. J Alloys Compd, 2020, 819: 153278

    Article  CAS  Google Scholar 

  22. Zhang Y, Jiang X, Fang Y, et al. Research and development of welding methods and welding mechanism of high-entropy alloys: A review. Mater Today Commun, 2021, 28: 102503

    Article  CAS  Google Scholar 

  23. Sun M, Xu B, Xie B, et al. Leading manufacture of the large-scale weldless stainless steel forging ring: Innovative approach by the multilayer hot-compression bonding technology. J Mater Sci Tech, 2021, 71: 84–86

    Article  CAS  Google Scholar 

  24. Sun M, Xu B, Xie B, et al. Research advances on homogenization manufacturing of heavy components by metal additive forging. Chin Sci Bull, 2020, 65: 3043–3058

    Article  Google Scholar 

  25. Xie B, Sun M, Xu B, et al. Oxidation of stainless steel in vacuum and evolution of surface oxide scales during hot-compression bonding. Corrosion Sci, 2019, 147: 41–52

    Article  CAS  Google Scholar 

  26. Xie B, Sun M, Xu B, et al. Dissolution and evolution of interfacial oxides improving the mechanical properties of solid state bonding joints. Mater Des, 2018, 157: 437–446

    Article  CAS  Google Scholar 

  27. Xie B, Sun M, Xu B, et al. Evolution of interfacial characteristics and mechanical properties for 316LN stainless steel joints manufactured by hot-compression bonding. J Mater Proc Tech, 2020, 283: 116733

    Article  CAS  Google Scholar 

  28. Xie B, Yu Z, Jiang H, et al. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding. J Mater Sci Tech, 2022, 96: 199–211

    Article  Google Scholar 

  29. Zhang JY, Xu B, Haq Tariq N, et al. Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding. J Mater Sci Tech, 2020, 46: 1–11

    Article  Google Scholar 

  30. Zhou L, Chen W, Feng S, et al. Dynamic recrystallization behavior and interfacial bonding mechanism of 14Cr ferrite steel during hot deformation bonding. J Mater Sci Tech, 2020, 43: 92–103

    Article  CAS  Google Scholar 

  31. Xu X, Ma X, Yu S, et al. Bonding mechanism and mechanical properties of 2196 Al-Cu-Li alloy joined by hot compression deformation. Mater Charact, 2020, 167: 110486

    Article  CAS  Google Scholar 

  32. Wang Y, Liu Y, Pay SD, et al. A study of solid-state bonding-by-hot-deforming mechanism in Inconel 718. J Mater Processing Tech, 2021, 295: 117191

    Article  CAS  Google Scholar 

  33. Xiong T, Yang W, Zheng S, et al. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFe-Ni2.1. J Mater Sci Tech, 2021, 65: 216–227

    Article  Google Scholar 

  34. Lu J, Zhang H, Chen Y, et al. Y-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation resistance and structure stability at 1000°C and 1100°C. Corrosion Sci, 2021, 180: 109191

    Article  CAS  Google Scholar 

  35. Lu Y, Gao X, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater, 2017, 124: 143–150

    Article  CAS  Google Scholar 

  36. Wani IS, Bhattacharjee T, Sheikh S, et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Mater Sci Eng-A, 2016, 675: 99–109

    Article  CAS  Google Scholar 

  37. Wani IS, Bhattacharjee T, Sheikh S, et al. Cold-rolling and re-crystallization textures of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics, 2017, 84: 42–51

    Article  CAS  Google Scholar 

  38. Wang Y, Chen W, Zhang J, et al. A quantitative understanding on the mechanical behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy. J Alloys Compd, 2021, 850: 156610

    Article  CAS  Google Scholar 

  39. Zhang Y, Li J, Wang X, et al. The interaction and migration of deformation twin in an eutectic high-entropy alloy AlCoCrFeNi2.1. J Mater Sci Tech, 2019, 35: 902–906

    Article  CAS  Google Scholar 

  40. Zhang Y, Wang X, Li J, et al. Deformation mechanism during high-temperature tensile test in an eutectic high-entropy alloy AlCoCrFe-Ni2.1. Mater Sci Eng-A, 2018, 724: 148–155

    Article  CAS  Google Scholar 

  41. Huang K, Logé RE. A review of dynamic recrystallization phenomena in metallic materials. Mater Des, 2016, 111: 548–574

    Article  CAS  Google Scholar 

  42. Gourdet S, Montheillet F. A model of continuous dynamic re-crystallization. Acta Mater, 2003, 51: 2685–2699

    Article  CAS  Google Scholar 

  43. Zhang JY, Xu B, Tariq NH, et al. Effect of strain rate on plastic deformation bonding behavior of Ni-based superalloys. J Mater Sci Tech, 2020, 40: 54–63

    Article  Google Scholar 

  44. Zhang JY, Sun MY, Xu B, et al. Evolution of the interfacial microstructure during the plastic deformation bonding of copper. Mater Sci Eng-A, 2019, 746: 1–10

    Article  CAS  Google Scholar 

  45. Shi P, Ren W, Zheng T, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat Commun, 2019, 10: 489

    Article  CAS  Google Scholar 

  46. Nasedkina Y, Sauvage X, Bobruk EV, et al. Mechanisms of precipitation induced by large strains in the Al-Cu system. J Alloys Compd, 2017, 710: 736–747

    Article  CAS  Google Scholar 

  47. Hong SM, Kim MY, Min DJ, et al. Unraveling the origin of strain-induced precipitation of M23C6 in the plastically deformed 347 Austenite stainless steel. Mater Charact, 2014, 94: 7–13

    Article  CAS  Google Scholar 

  48. Yeh JW. Alloy design strategies and future trends in high-entropy alloys. JOM, 2013, 65: 1759–1771

    Article  CAS  Google Scholar 

  49. Pickering EJ, Muñoz-Moreno R, Stone HJ, et al. Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scripta Mater, 2016, 113: 106–109

    Article  CAS  Google Scholar 

  50. Otto F, Dlouhý A, Pradeep KG, et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater, 2016, 112: 40–52

    Article  CAS  Google Scholar 

  51. Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater, 2015, 96: 258–268

    Article  CAS  Google Scholar 

  52. Chou TH, Huang JC, Yang CH, et al. Consideration of kinetics on intermetallics formation in solid-solution high entropy alloys. Acta Mater, 2020, 195: 71–80

    Article  CAS  Google Scholar 

  53. Choudhuri D, Shukla S, Gwalani B, et al. Deformation induced intermediate metastable lattice structures facilitate ordered B2 nucleation in a fcc-based high entropy alloy. Mater Res Lett, 2018, 7: 40–46

    Article  Google Scholar 

  54. Choudhuri D, Gwalani B, Gorsse S, et al. Enhancing strength and strain hardenability via deformation twinning in fcc-based high entropy alloys reinforced with intermetallic compounds. Acta Mater, 2019, 165: 420–430

    Article  CAS  Google Scholar 

  55. Bhattacharjee T, Wani IS, Sheikh S, et al. Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing. Sci Rep, 2018, 8: 3276

    Article  CAS  Google Scholar 

  56. Wani IS, Bhattacharjee T, Sheikh S, et al. Ultrafine-grained AlCoCr-FeNi2.1 eutectic high-entropy alloy Mater Res Lett, 2016, 4: 174–179

    Article  CAS  Google Scholar 

  57. Xiong T, Zheng S, Pang J, et al. High-strength and high-ductility Al-CoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure Scripta Mater, 2020, 186: 336–340

    Article  CAS  Google Scholar 

  58. Yang L, McLellan RB. An observation of structural transformation in hydrogenated Ni3Al. Acta Mater, 1996, 44: 621–624

    Article  CAS  Google Scholar 

  59. Weygand D, Bréchet Y, Lépinoux J. Zener pinning and grain growth: A two-dimensional vertex computer simulation. Acta Mater, 1999, 47: 961–970

    Article  CAS  Google Scholar 

  60. Maazi N, Boulechfar R. A modified grain growth Monte Carlo algorithm for increased calculation speed in the presence of Zener drag effect. Mater Sci Eng-B, 2019, 242: 52–62

    Article  CAS  Google Scholar 

  61. Hazzledine PM, Oldershaw RDJ. Computer simulation of Zener pinning. Philos Mag A, 1990, 61: 579–589

    Article  Google Scholar 

  62. Liu WJ, Jonas JJ. Ti(CN) precipitation in microalloyed austenite during stress relaxation. Metall Trans A, 1988, 19: 1415–1424

    Article  Google Scholar 

  63. Pandit A, Murugaiyan A, Podder AS, et al. Strain induced precipitation of complex carbonitrides in Nb-V and Ti-V microalloyed steels. Scripta Mater, 2005, 53: 1309–1314

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (2018YFA0702900), the National Natural Science Foundation of China (52173305, 52101061, 52233017, and 52203384), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDC04000000), China Postdoctoral Science Foundation (2020M681004, 2021M703276, and 2022T150662), the IMR Innovation Foundation (2022-PY12), LingChuang Research Project of China National Nuclear Corporation, and the Youth Innovation Promotion Association, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Dai Q and Xie B designed the study; Dai Q performed the main experiments with support from Xie B, Ren S, and Yu Z; Dai Q analyzed the data and wrote the draft with the help of Xie B, Xu B, and Sun M. All authors contributed to the discussion of the results and commented on the manuscript.

Corresponding author

Correspondence to Mingyue Sun  (孙明月).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Qianning Dai received a Bachelor degree from Dalian University of Technology in 2020. He is now pursing his PhD degree under the supervision of Prof. Mingyue Sun at the School of Materials Science and Engineering, University of Science and Technology of China. His main research interest is the metal additive forging of high-entropy alloys.

Bijun Xie received her PhD degree from the Institution of Metal Research (IMR), Chinese Academy of Sciences in 2020. She is now conducting her postdoctoral research at IMR. Her main research interests include studies on the evolution mechanism of interfacial microstructure and interfacial oxides in additive forging of stainless steel and Ti alloys as well as high-entropy alloys.

Bin Xu received his PhD degree from IMR, Chinese Academy of Sciences. He is a full associate professor at IMR. His main research interest is numerical simulation and process design of the forging process.

Mingyue Sun received his PhD degree from IMR, Chinese Academy of Sciences in 2009 and has been working at IMR until now. Currently, he is a full professor and doctoral supervisor at IMR. His most recent research interests include the technology of metal additive forging and special steel forging and casting integration technology as well as the advanced technology of shape and performance control of heavy forgings.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Q., Xie, B., Ren, S. et al. Divergent interfacial behaviors of homo-/hetero-phase boundaries in a dual-phase eutectic high-entropy alloy. Sci. China Mater. 66, 2454–2466 (2023). https://doi.org/10.1007/s40843-022-2361-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2361-4

Keywords

Navigation