Skip to main content
Log in

Carbon dots embedded in lead-free luminescent metal halide crystals toward single-component white emitters

内嵌碳点的无铅金属卤化物单晶用于单组分白光发 射体

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The development of single-component white emitters for white light-emitting diodes (WLEDs) remains challenging. Herein, a rare earth-free white light-emitting composite is developed by assembling blue-emitting carbon dots (CDs) and yellow-emitting Cs2InCl5·H2O:Sb3+ metal halide crystals via a facile liquid-liquid diffusion-assisted crystallization approach. The encapsulation mechanism is then analyzed. Depending on the ratios of blue/yellow emitters, these luminescent composites exhibit white light emission with tunable cold and warm hues. The composites also possess prominent ultraviolet resistance, thermal tolerance, and good stability at about 200°C. By employing such “CDs in metal halide” composites as a converter, a WLED is successfully fabricated with a high color rendering index of 93.6, benefiting from the assembled blue and yellow broadband emission. With this strategy, the developed composites show great promise in next-generation WLED lighting.

摘要

白光发光二极管(WLED)照明光源的发展对于降低能源消耗具 有重要意义. 然而, 常用的基于荧光粉转换技术的WLED器件存在自吸 收严重、显色指数低和稀土元素供应风险等多方面的不足. 对此, 本文 通过组装蓝光碳点(CDs)和无铅黄光金属卤化物(Cs2InCl5·H2O:Sb3+), 开发了一种新的单组分白光发射材料. 采用液-液扩散辅助结晶方法, 本工作成功地将CDs嵌入到Cs2InCl5·H2O:Sb3+晶体中, 复合材料呈现出 白光发射. 调节CDs和Cs2InCl5·H2O:Sb3+的比例可实现冷/暖色调可调. 使用这种“内嵌CDs的卤化物晶体”复合材料作为转换器, 我们成功制造 出单一体系WLED, 其显色指数(CRI)高达93.6, 为下一代室内高品质 WLED照明光源提供了一种便捷有效的策略.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen J, Wang J, Xu X, et al. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat Photonics, 2021, 15: 238–244

    Article  CAS  Google Scholar 

  2. Han TH, Lee Y, Choi MR, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photon, 2012, 6: 105–110

    Article  CAS  Google Scholar 

  3. Cho J, Park JH, Kim JK, et al. White light-emitting diodes: History, progress, and future. Laser Photonics Rev, 2017, 11: 1600147

    Article  CAS  Google Scholar 

  4. Pust P, Weiler V, Hecht C, et al. Narrow-band red-emitting Sr[LiAl3-N4]:Eu2+ as a next-generation LED-phosphor material. Nat Mater, 2014, 13: 891–896

    Article  CAS  Google Scholar 

  5. Hu T, Ning L, Gao Y, et al. Glass crystallization making red phosphor for high-power warm white lighting. Light Sci Appl, 2021, 10: 56

    Article  CAS  Google Scholar 

  6. Zhao M, Zhang Q, Xia Z. Structural engineering of Eu2+-doped silicates phosphors for LED applications. Acc Mater Res, 2020, 1: 137–145

    Article  CAS  Google Scholar 

  7. Luo J, Wang X, Li S, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563: 541–545

    Article  CAS  Google Scholar 

  8. Sadhanala A, Kumar A, Pathak S, et al. Electroluminescence from or-ganometallic lead halide perovskite-conjugated polymer diodes. Adv Electron Mater, 2015, 1: 1500008

    Article  CAS  Google Scholar 

  9. Ma Z, Shi Z, Yang D, et al. High color-rendering index and stable white light-emitting diodes by assembling two broadband emissive self-trapped excitons. Adv Mater, 2021, 33: 2001367

    Article  CAS  Google Scholar 

  10. Zhang H, Zhang H, Pan A, et al. Rare earth-free luminescent materials for WLEDs: Recent progress and perspectives. Adv Mater Technol, 2021, 6: 2000648

    Article  CAS  Google Scholar 

  11. Luo J, Hu M, Niu G, et al. Lead-free halide perovskites and perovskite variants as phosphors toward light-emitting applications. ACS Appl Mater Interfaces, 2019, 11: 31575–31584

    Article  CAS  Google Scholar 

  12. Li J, Wang B, Zhang H, et al. Carbon dots-in-matrix boosting intriguing luminescence properties and applications. Small, 2019, 15: 1805504

    Article  CAS  Google Scholar 

  13. Tang Y, Wu H, Cao W, et al. Luminescent metal-organic frameworks for white LEDs. Adv Opt Mater, 2021, 9: 2001817

    Article  CAS  Google Scholar 

  14. Zhao M, Yang Z, Ning L, et al. Tailoring of white luminescence in a NaLi3SiO4:Eu2+ phosphor containing broad-band defect-induced charge-transfer emission. Adv Mater, 2021, 33: 2101428

    Article  CAS  Google Scholar 

  15. Wong AB, Lai M, Eaton SW, et al. Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes. Nano Lett, 2015, 15: 5519–5524

    Article  CAS  Google Scholar 

  16. Kovalenko MV, Protesescu L, Bodnarchuk MI. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 2017, 358: 745–750

    Article  CAS  Google Scholar 

  17. Xiao Z, Song Z, Yan Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv Mater, 2019, 31: 1803792

    Article  CAS  Google Scholar 

  18. Hu Q, Niu G, Zheng Z, et al. Tunable color temperatures and efficient white emission from Cs2Ag1−xNaxIn1−yBiyCl6 double perovskite nanocrystals. Small, 2019, 15: 1903496

    Article  CAS  Google Scholar 

  19. Leng M, Yang Y, Zeng K, et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Adv Funct Mater, 2018, 28: 1704446

    Article  CAS  Google Scholar 

  20. Mo X, Li T, Huang F, et al. Highly-efficient all-inorganic lead-free 1D CsCu2I3 single crystal for white-light emitting diodes and UV photodetection. Nano Energy, 2021, 81: 105570

    Article  CAS  Google Scholar 

  21. Karim MMS, Ganose AM, Pieters L, et al. Anion distribution, structural distortion, and symmetry-driven optical band gap bowing in mixed halide Cs2SnX6 vacancy ordered double perovskites. Chem Mater, 2019, 31: 9430–9444

    Article  CAS  Google Scholar 

  22. Li S, Xu J, Li Z, et al. One-dimensional lead-free halide with near-unity greenish-yellow light emission. Chem Mater, 2020, 32: 6525–6531

    Article  CAS  Google Scholar 

  23. Giustino F, Snaith HJ. Toward lead-free perovskite solar cells. ACS Energy Lett, 2016, 1: 1233–1240

    Article  CAS  Google Scholar 

  24. Liu M, Duan CK, Tanner PA, et al. Rationalizing the photoluminescence of Bi3+ and Sb3+ in double perovskite halide crystals. J Phys Chem C, 2021, 125: 26670–26678

    Article  CAS  Google Scholar 

  25. Zhang W, Zheng W, Li L, et al. Dual-band-tunable white-light emission from Bi3+/Te4+ emitters in perovskite-derivative Cs2SnCl6 microcrystals. Angew Chem Int Ed, 2022, 61: e202116085

    CAS  Google Scholar 

  26. Jing Y, Liu Y, Jiang X, et al. Sb3+ dopant and halogen substitution triggered highly efficient and tunable emission in lead-free metal halide single crystals. Chem Mater, 2020, 32: 5327–5334

    Article  CAS  Google Scholar 

  27. Mao L, Wu Y, Stoumpos CC, et al. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4-Pb3Br10−xClx. J Am Chem Soc, 2017, 139: 11956–11963

    Article  CAS  Google Scholar 

  28. Jing Y, Liu Y, Li M, et al. Photoluminescence of singlet/triplet self-trapped excitons in Sb3+-based metal halides. Adv Opt Mater, 2021, 9: 2002213

    Article  CAS  Google Scholar 

  29. Mao J, Lin H, Ye F, et al. All-perovskite emission architecture for white light-emitting diodes. ACS Nano, 2018, 12: 10486–10492

    Article  CAS  Google Scholar 

  30. Sun R, Lu P, Zhou D, et al. Samarium-doped metal halide perovskite nanocrystals for single-component electroluminescent white light-emitting diodes. ACS Energy Lett, 2020, 5: 2131–2139

    Article  CAS  Google Scholar 

  31. Shirasaki Y, Supran GJ, Bawendi MG, et al. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photon, 2013, 7: 13–23

    Article  CAS  Google Scholar 

  32. Bae WK, Lim J, Lee D, et al. R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices. Adv Mater, 2014, 26: 6387–6393

    Article  CAS  Google Scholar 

  33. Li D, Li W, Zhang H, et al. Far-red carbon dots as efficient light-harvesting agents for enhanced photosynthesis. ACS Appl Mater Interfaces, 2020, 12: 21009–21019

    Article  CAS  Google Scholar 

  34. Adam M, Wang Z, Dubavik A, et al. Liquid-liquid diffusion-assisted crystallization: A fast and versatile approach toward high quality mixed quantum dot-salt crystals. Adv Funct Mater, 2015, 25: 2638–2645

    Article  CAS  Google Scholar 

  35. Cheng X, Li R, Zheng W, et al. Tailoring the broadband emission in all-inorganic lead-free 0D In-based halides through Sb3+ doping. Adv Opt Mater, 2021, 9: 2100434

    Article  CAS  Google Scholar 

  36. Huang S, Guo M, Tan J, et al. Novel fluorescence sensor based on all-inorganic perovskite quantum dots coated with molecularly imprinted polymers for highly selective and sensitive detection of omethoate. ACS Appl Mater Interfaces, 2018, 10: 39056–39063

    Article  CAS  Google Scholar 

  37. Chen J, Liu D, Al-Marri MJ, et al. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application. Sci China Mater, 2016, 59: 719–727

    Article  CAS  Google Scholar 

  38. Shi Z, Li S, Li Y, et al. Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes. ACS Nano, 2018, 12: 1462–1472

    Article  CAS  Google Scholar 

  39. Aristidou N, Eames C, Sanchez-Molina I, et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat Commun, 2017, 8: 15218

    Article  Google Scholar 

  40. Liu H, Wang F, Wang Y, et al. Whispering gallery mode laser from carbon dot-NaCl hybrid crystals. ACS Appl Mater Interfaces, 2017, 9: 18248–18253

    Article  CAS  Google Scholar 

  41. Kim TH, Wang F, McCormick P, et al. Salt-embedded carbon nanodots as a UV and thermal stable fluorophore for light-emitting diodes. J Lumin, 2014, 154: 1–7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (51961145101), Guangzhou Science & Technology Project (202007020005), the Project Supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (GDUPS, 2018) for Prof. Bingfu Lei, the National Key R&D Program of China (2020YFB0407902), Guangdong Provincial Science & Technology Project (2021A0505050006 and 2021B0707010003), and Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams (2021KJ122).

Author information

Authors and Affiliations

Authors

Contributions

Chen W designed and engineered the samples; Zhang X and Ma C guided the characterization and optimization of the materials; Chen W and Li W performed the experiments; Chen W wrote the paper with support from Xia Z and Lei B. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Zhiguo Xia  (夏志国) or Bingfu Lei  (雷炳富).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Weibin Chen was previously a master’s student in Prof. Bingfu Lei’s group at South China Agricultural University and is now studying as a PhD candidate at the State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, under the supervision of Prof. Zhiguo Xia. His research involves inorganic luminescent materials and LED/LD devices.

Zhiguo Xia is currently a professor at the South China University of Technology. He obtained his bachelor’s degree in 2002 and master’s degree in 2005 from Beijing Technology and Business University, and his PhD degree from Tsinghua University in 2008. His research interests are designing new rare-earth phosphors and luminescent metal halides for emerging photonics applications by integrating structural discovery, modification, and structure-property relation studies.

Bingfu Lei is currently a professor at the College of Materials and Energy, South China Agricultural University. He obtained his PhD degree in 2007 in condensed matter physics from Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences. His research focuses on luminescent materials synthesis and the application of luminescent materials in agriculture and display.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Li, W., Zhang, X. et al. Carbon dots embedded in lead-free luminescent metal halide crystals toward single-component white emitters. Sci. China Mater. 65, 2802–2808 (2022). https://doi.org/10.1007/s40843-022-2009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2009-y

Keywords

Navigation