Skip to main content
Log in

Theoretical studies of MXene-supported single-atom catalysts: Os1/Ti2CS2 for low-temperature CO oxidation

MXene负载的锇单原子催化剂Os1/Ti2CS2催化低温 CO氧化反应的理论研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

We report herein a new sulfur-functionalized MXene Ti2C (Ti2CS2)-supported osmium-metal single-atom catalyst (SAC) Os1/Ti2CS2 with high low-temperature catalytic activity for CO oxidation. Using periodic density functional theory calculations, the most stable SAC, Os1/Ti2CS2, has been screened from a series of group 8–11 transition metal SACs M1/Ti2CS2 (M = Fe, Co, Ni, Cu; Ru, Rh, Pd, Ag; Os, Ir, Pt, Au). The calculations show that it is favorable for O2 and CO to be coadsorbed on the Os1 single atom (SA) of Os1/Ti2CS2 and the adsorption energy of the first O2 molecule is slightly higher than that of CO. Moreover, the termolecular co-adsorption of O2 + 2CO on Os1 SA is also possible, which is favorable for CO oxidation on Os1 SA through a novel three-molecule reaction mechanism. Accordingly, four different catalytic mechanisms, the Langmuir-Hinshelwood (L-H), Eley-Rideal (E-R), termolecular Langmuir-Hinshelwood-A (TLH-A) and termolecular Langmuir-Hinshelwood-B (TLH-B), are systematically studied for CO oxidation by O2 on Os1/Ti2CS2. The theoretical studies indicate that the TLH-B mechanism is the most feasible for CO oxidation with the reaction barrier energy of only 0.74 eV, which is far lower than for L-H, E-R and TLH-A with barrier energies of 1.06, 1.09 and 1.47 eV, respectively. The results provide fundamental understanding to the surface chemistry of MXene and designing new sulfur-functionalized two-dimensional MXene catalytic nanomaterials.

摘要

本文报道了一种对CO氧化反应具有低温催化活性的新型硫功能 化MXene-Ti2C (Ti2CS2)负载的锇金属单原子催化剂Os1/Ti2CS2. 通过密 度泛函理论计算, 从一系列过渡金属(M = Fe, Co, Ni, Cu; Ru, Rh, Pd, Ag; Os, Ir, Pt, Au)中筛选出最稳定的锇金属单原子催化剂. 计算结果表 明, Os1/Ti2CS2有利于O2和CO的共吸附, 且O2分子的吸附能略高于CO 分子. 此外, 由于O2+2CO能稳定地共吸附在Os1单原子上, CO氧化反应 可能通过三分子反应机理进行. 因此, 我们研究了CO在Os1/Ti2CS2单原 子催化剂上发生氧化反应的四种不同的催化机理: Langmuir-Hinshelwood (L–H)、Eley Rideal (E–R)、termolecular Langmuir-Hinshelwood-A (TLH-A)和termolecular Langmuir-Hinshelwood-B (TLH-B)机 理. 结果表明TLH-B机理最可能发生, 其反应势垒仅为0.74 eV, 远低于 L–H、E–R和TLH-A的反应势垒(分别为1.06, 1.09和1.47 eV). 上述研究 结果有助于理解MXene的表面化学并设计稳定的新型二维硫端基 MXene催化材料.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem, 2011, 3: 634–641

    Article  CAS  Google Scholar 

  2. Chen YJ, Zhuo HY, Pan Y, et al. Triazine COF-supported single-atom catalyst (Pd1/trzn-COF) for CO oxidation. Sci China Mater, 2021, 64: 1939–1951

    Article  CAS  Google Scholar 

  3. Zhu C, Liang JX, Meng Y, et al. Mn-corrolazine-based 2D-nanocatalytic material with single Mn atoms for catalytic oxidation of alkane to alcohol. Chin J Catal, 2021, 42: 1030–1039

    Article  CAS  Google Scholar 

  4. Nie G, Li P, Liang JX, et al. Theoretical investigation on the photocatalytic activity of the Au/g-C3N4 monolayer. J Theor Comput Chem, 2017, 16: 1750013

    Article  CAS  Google Scholar 

  5. Liu Y, Liu JC, Li TH, et al. Unravelling the enigma of nonoxidative conversion of methane on iron single-atom catalysts. Angew Chem Int Ed, 2020, 59: 18586–18590

    Article  CAS  Google Scholar 

  6. Tang Y, Wang YG, Li J. Theoretical investigations of Pt1@CeO2 singleatom catalyst for CO oxidation. J Phys Chem C, 2017, 121: 11281–11289

    Article  CAS  Google Scholar 

  7. Zhang M, Wang YG, Chen W, et al. Metal (hydr)oxides@polymer core-shell strategy to metal single-atom materials. J Am Chem Soc, 2017, 139: 10976–10979

    Article  CAS  Google Scholar 

  8. Zhang N, Zhang X, Tao L, et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew Chem Int Ed, 2021, 60: 6170–6176

    Article  CAS  Google Scholar 

  9. Zhu M, Zhao C, Liu X, et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells. ACS Catal, 2021, 11: 3923–3929

    Article  CAS  Google Scholar 

  10. Huang CX, Li G, Yang LM, et al. Ammonia synthesis using single-atom catalysts based on two-dimensional organometallic metal phthalocyanine monolayers under ambient conditions. ACS Appl Mater Interfaces, 2021, 13: 608–621

    Article  CAS  Google Scholar 

  11. Yang XF, Wang A, Qiao B, et al. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc Chem Res, 2013, 46: 1740–1748

    Article  CAS  Google Scholar 

  12. Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem, 2018, 2: 65–81

    Article  CAS  Google Scholar 

  13. Zhuo HY, Zhang X, Liang JX, et al. Theoretical understandings of graphene-based metal single-atom catalysts: Stability and catalytic performance. Chem Rev, 2020, 120: 12315–12341

    Article  CAS  Google Scholar 

  14. Liu JC, Tang Y, Wang YG, et al. Theoretical understanding of the stability of single-atom catalysts. Natl Sci Rev, 2018, 5: 638–641

    Article  CAS  Google Scholar 

  15. Liu K, Tang Y, Yu Z, et al. High-loading and thermally stable Pt1/MgAl1.2Fe0.8O4 single-atom catalysts for high-temperature applications. Sci China Mater, 2020, 63: 949–958

    Article  CAS  Google Scholar 

  16. Wei H, Liu X, Wang A, et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat Commun, 2014, 5: 5634

    Article  CAS  Google Scholar 

  17. Liu S, Yang HB, Hung SF, et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew Chem Int Ed, 2020, 59: 798–803

    Article  CAS  Google Scholar 

  18. Liu JC, Wang YG, Li J Toward rational design of oxide-supported single-atom catalysts: Atomic dispersion of gold on ceria. J Am Chem Soc, 2017, 139: 6190–6199

    Article  CAS  Google Scholar 

  19. Xing DH, Xu CQ, Wang YG, et al. Heterogeneous single-cluster catalysts for selective semihydrogenation of acetylene with graphdiynesupported triatomic clusters. J Phys Chem C, 2019, 123: 10494–10500

    Article  CAS  Google Scholar 

  20. Liu W, Chen Y, Qi H, et al. A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. Angew Chem Int Ed, 2018, 57: 7071–7075

    Article  CAS  Google Scholar 

  21. Yang J, Wang X, Qu Y, et al. Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv Energy Mater, 2020, 10: 2001709

    Article  CAS  Google Scholar 

  22. Yang J, Wang Z, Huang CX, et al. Compressive strain modulation of single iron sites on helical carbon support boosts electrocatalytic oxygen reduction. Angew Chem Int Ed, 2021, 60: 22722–22728

    Article  CAS  Google Scholar 

  23. Wang X, Yang LM. Efficient modulation of the catalytic performance of electrocatalytic nitrogen reduction with transition metals anchored on N/O-codoped graphene by coordination engineering. J Mater Chem A, 2022, doi: https://doi.org/10.1039/D1TA08877G

  24. Wang YG, Mei D, Glezakou VA, et al. Dynamic formation of singleatom catalytic active sites on ceria-supported gold nanoparticles. Nat Commun, 2015, 6: 6511

    Article  CAS  Google Scholar 

  25. Ma XL, Liu JC, Xiao H, et al. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J Am Chem Soc, 2018, 140: 46–49

    Article  CAS  Google Scholar 

  26. Liu JC, Ma XL, Li Y, et al. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat Commun, 2018, 9: 1610

    Article  Google Scholar 

  27. Wang L, Huang L, Liang F, et al. Preparation, characterization and catalytic performance of single-atom catalysts. Chin J Catal, 2017, 38: 1528–1539

    Article  CAS  Google Scholar 

  28. Lin J, Wang A, Qiao B, et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J Am Chem Soc, 2013, 135: 15314–15317

    Article  CAS  Google Scholar 

  29. Qiao B, Liang JX, Wang A, et al. Single atom gold catalysts for low-temperature CO oxidation. Chin J Catal, 2016, 37: 1580–1586

    Article  CAS  Google Scholar 

  30. Ren Y, Tang Y, Zhang L, et al. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat Commun, 2019, 10: 4500

    Article  Google Scholar 

  31. Zhuo HY, Yu X, Yu Q, et al. Selective hydrogenation of acetylene on graphene-supported non-noble metal single-atom catalysts. Sci China Mater, 2020, 63: 1741–1749

    Article  CAS  Google Scholar 

  32. Chen Y, Ji S, Sun W, et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew Chem Int Ed, 2020, 59: 1295–1301

    Article  CAS  Google Scholar 

  33. Yin P, Yao T, Wu Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew Chem Int Ed, 2016, 55: 10800–10805

    Article  CAS  Google Scholar 

  34. Li Z, Ji S, Liu Y, et al. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem Rev, 2020, 120: 623–682

    Article  CAS  Google Scholar 

  35. Xiong Y, Dong J, Huang ZQ, et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat Nanotechnol, 2020, 15: 390–397

    Article  CAS  Google Scholar 

  36. Wei S, Li A, Liu JC, et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat Nanotech, 2018, 13: 856–861

    Article  CAS  Google Scholar 

  37. Li X, Liu L, Ren X, et al. Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Sci Adv, 2020, 6: eabb6833

    Article  CAS  Google Scholar 

  38. Xu H, Xu CQ, Cheng D, et al. Identification of activity trends for CO oxidation on supported transition-metal single-atom catalysts. Catal Sci Technol, 2017, 7: 5860–5871

    Article  CAS  Google Scholar 

  39. Lang R, Xi W, Liu JC, et al. Non defect-stabilized thermally stable single-atom catalyst. Nat Commun, 2019, 10: 234

    Article  Google Scholar 

  40. Talib SH, Yu X, Yu Q, et al. Non-noble metal single-atom catalysts with phosphotungstic acid (PTA) support: A theoretical study of ethylene epoxidation. Sci China Mater, 2020, 63: 1003–1014

    Article  CAS  Google Scholar 

  41. Zhang Y, Zhang C, Mo Y, et al. Planar tetracoordinate silicon in organic molecules as carbenoid-type amphoteric centers: A computational study. Chem Eur J, 2021, 27: 1402–1409

    Article  CAS  Google Scholar 

  42. Fang L, Zhang C, Cao X, et al. Tackling the inertness of CO2: Facile activation and electroreduction on the metal-free SiN4C4 monolayer sheet. J Phys Chem C, 2020, 124: 18660–18669

    Article  CAS  Google Scholar 

  43. Long B, Tang Y, Li J. New mechanistic pathways for CO oxidation catalyzed by single-atom catalysts: Supported and doped Au1/ThO2. Nano Res, 2016, 9: 3868–3880

    Article  CAS  Google Scholar 

  44. Xu J, Li R, Xu CQ, et al. Underpotential-deposition synthesis and inline electrochemical analysis of single-atom copper electrocatalysts. Appl Catal B-Environ, 2021, 289: 120028

    Article  CAS  Google Scholar 

  45. Liang JX, Lin J, Liu J, et al. Dual metal active sites in an Ir1/FeOx singleatom catalyst: A redox mechanism for the water-gas shift reaction. Angew Chem Int Ed, 2020, 59: 12868–12875

    Article  CAS  Google Scholar 

  46. Liang JX, Yang XF, Wang A, et al. Theoretical investigations of nonnoble metal single-atom catalysis: Ni1/FeOx for CO oxidation. Catal Sci Technol, 2016, 6: 6886–6892

    Article  CAS  Google Scholar 

  47. Gao D, Liu T, Wang G, et al. Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Lett, 2021, 6: 713–727

    Article  CAS  Google Scholar 

  48. Wang Q, Huang X, Zhao ZL, et al. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J Am Chem Soc, 2020, 142: 7425–7433

    Article  CAS  Google Scholar 

  49. Baskaran S, Xu CQ, Wang YG, et al. Catalytic mechanism and bonding analyses of Au-Pd single atom alloy (SAA): CO oxidation reaction. Sci China Mater, 2020, 63: 993–1002

    Article  CAS  Google Scholar 

  50. Ji S, Qu Y, Wang T, et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew Chem Int Ed, 2020, 59: 10651–10657

    Article  CAS  Google Scholar 

  51. Lei Y, Wang Y, Liu Y, et al. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew Chem Int Ed, 2020, 59: 20794–20812

    Article  CAS  Google Scholar 

  52. Liang J, Yang X, Xu C, et al. Catalytic ativities of single-atom catalysts for CO oxidation: Pt1/FeOxvs. Fe1/FeOx. Chin J Catal, 2017, 38: 1566–1573

    Article  CAS  Google Scholar 

  53. Guo X, Fang G, Li G, et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science, 2014, 344: 616–619

    Article  CAS  Google Scholar 

  54. Wang X, Yang LM. Unveiling the underlying mechanism of nitrogen fixation by a new class of electrocatalysts two-dimensional TM@g-C4N3 monosheets. Appl Surf Sci, 2022, 576: 151839

    Article  CAS  Google Scholar 

  55. Cao X, Ji Y, Luo Y. Dehydrogenation of propane to propylene by a Pd/Cu single-atom catalyst: Insight from first-principles calculations. J Phys Chem C, 2015, 119: 1016–1023

    Article  CAS  Google Scholar 

  56. Tang S, Zhou X, Liu T, et al. Single nickel atom supported on hybridized graphene-boron nitride nanosheet as a highly active bi-functional electrocatalyst for hydrogen and oxygen evolution reactions. J Mater Chem A, 2019, 7: 26261–26265

    Article  CAS  Google Scholar 

  57. Wei Y, Soomro RA, Xie X, et al. Design of efficient electrocatalysts for hydrogen evolution reaction based on 2D mxenes. J Energy Chem, 2021, 55: 244–255

    Article  Google Scholar 

  58. Zhu Q, Li J, Simon P, et al. Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives. Energy Storage Mater, 2021, 35: 630–660

    Article  Google Scholar 

  59. Wang Y, Mao J, Meng X, et al. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem Rev, 2019, 119: 1806–1854

    Article  CAS  Google Scholar 

  60. Cui X, Li H, Wang Y, et al. Room-temperature methane conversion by graphene-confined single iron atoms. Chem, 2018, 4: 1902–1910

    Article  CAS  Google Scholar 

  61. Zhang M, Lai C, Li B, et al. Mxenes as superexcellent support for confining single atom: Properties, synthesis, and electrocatalytic applications. Small, 2021, 17: 2007113

    Article  CAS  Google Scholar 

  62. Oschinski H, Morales-García Á, Illas F. Interaction of first row transition metals with M2C (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) MXenes: A quest for single-atom catalysts. J Phys Chem C, 2021, 125: 2477–2484

    Article  CAS  Google Scholar 

  63. Wang S, Li J, Li Q, et al. Metal single-atom coordinated graphitic carbon nitride as an efficient catalyst for CO oxidation. Nanoscale, 2020, 12: 364–371

    Article  Google Scholar 

  64. Kan D, Lian R, Wang D, et al. Screening effective single-atom ORR and OER electrocatalysts from Pt decorated MXenes by first-principles calculations. J Mater Chem A, 2020, 8: 17065–17077

    Article  CAS  Google Scholar 

  65. Shayesteh Zeraati A, Mirkhani SA, Sun P, et al. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale, 2021, 13: 3572–3580

    Article  CAS  Google Scholar 

  66. Li K, Zhang S, Li Y, et al. MXenes as noble-metal-alternative co-catalysts in photocatalysis. Chin J Catal, 2021, 42: 3–14

    Article  CAS  Google Scholar 

  67. Zhao MR, Song B, Yang LM. Two-dimensional single-atom catalyst TM3(HAB)2 monolayers for electrocatalytic dinitrogen reduction using hierarchical high-throughput screening. ACS Appl Mater Interfaces, 2021, 13: 26109–26122

    Article  CAS  Google Scholar 

  68. Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 2011, 23: 4248–4253

    Article  CAS  Google Scholar 

  69. Pang J, Mendes RG, Bachmatiuk A, et al. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev, 2019, 48: 72–133

    Article  CAS  Google Scholar 

  70. Lin H, Chen L, Lu X, et al. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction. Sci China Mater, 2019, 62: 662–670

    Article  CAS  Google Scholar 

  71. Wang C, Xu J, Wang Y, et al. MXene (Ti2NTx): Synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser. Sci China Mater, 2021, 64: 259–265

    Article  Google Scholar 

  72. Ye Y, Yi W, Liu W, et al. Remarkable surface-enhanced Raman scattering of highly crystalline monolayer Ti3C2 nanosheets. Sci China Mater, 2020, 63: 794–805

    Article  CAS  Google Scholar 

  73. Zhang J, Zhao Y, Guo X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat Catal, 2018, 1: 985–992

    Article  CAS  Google Scholar 

  74. Talib SH, Baskaran S, Yu X, et al. Non-noble metal single-atom catalyst of Co1/MXene (Mo2CS2) for CO oxidation. Sci China Mater, 2021, 64: 651–663

    Article  CAS  Google Scholar 

  75. Yin J, Zhan F, Jiao T, et al. Facile preparation of self-assembled MXene@Au@Cds nanocomposite with enhanced photocatalytic hydrogen production activity. Sci China Mater, 2020, 63: 2228–2238

    Article  CAS  Google Scholar 

  76. Li J, Yang QQ, Hu YX, et al. Design of lamellar Mo2C nanosheets assembled by Mo2C nanoparticles as an anode material toward excellent sodium-ion capacitors. ACS Sustain Chem Eng, 2019, 7: 18375–18383

    Article  CAS  Google Scholar 

  77. Zhang X, Lei J, Wu D, et al. A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation. J Mater Chem A, 2016, 4: 4871–4876

    Article  CAS  Google Scholar 

  78. Naguib M, Come J, Dyatkin B, et al. MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochem Commun, 2012, 16: 61–64

    Article  CAS  Google Scholar 

  79. Shein IR, Ivanovskii AL. Graphene-like titanium carbides and nitrides Tin+1CN, Tin+1Nn (n=1, 2, and 3) from de-intercalated max phases: First-principles probing of their structural, electronic properties and relative stability. Comput Mater Sci, 2012, 65: 104–114

    Article  CAS  Google Scholar 

  80. Deysher G, Shuck CE, Hantanasirisakul K, et al. Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano, 2020, 14: 204–217

    Article  CAS  Google Scholar 

  81. Kamysbayev V, Filatov AS, Hu H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 2020, 369: 979–983

    Article  CAS  Google Scholar 

  82. Meng Q, Ma J, Zhang Y, et al. The S-functionalized Ti3C2 Mxene as a high capacity electrode material for Na-ion batteries: a DFT study. Nanoscale, 2018, 10: 3385–3392

    Article  CAS  Google Scholar 

  83. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 47: 558–561

    Article  CAS  Google Scholar 

  84. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  85. Zhang Y, Yang W. Comment on “Generalized Gradient Approximation Made Simple”. Phys Rev Lett, 1998, 80: 890

    Article  CAS  Google Scholar 

  86. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  87. Liu X, Shao X, Li F, et al. Anchoring effects of S-terminated Ti2C MXene for lithium-sulfur batteries: A first-principles study. Appl Surf Sci, 2018, 455: 522–526

    Article  CAS  Google Scholar 

  88. Siriwardane EMD, Demiroglu I, Sevik C, et al. Assessment of sulfurfunctionalized MXenes for Li-ion battery applications. J Phys Chem C, 2020, 124: 21293–21304

    Article  CAS  Google Scholar 

  89. Henkelman G, Jónsson H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys, 1999, 111: 7010–7022

    Article  CAS  Google Scholar 

  90. Liang J, Yu Q, Yang X, et al. A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation. Nano Res, 2018, 11: 1599–1611

    Article  CAS  Google Scholar 

  91. Pyykkö P, Atsumi M. Molecular single-bond covalent radii for elements 1-118. Chem Eur J, 2009, 15: 186–197

    Article  Google Scholar 

  92. Vaska L. Dioxygen-metal complexes: toward a unified view. Acc Chem Res, 1976, 9: 175–183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21963005, 21763006, 22033005 and 22038002), the Natural Science Foundation of Guizhou University ([2021]40 and [2020] 32) and Guangdong Provincial Key Laboratory of Catalysis (2020B121201002). The calculations were performed by using supercomputers at SUSTech and Shanghai Supercomputing Center. The authors are grateful to Dr. Yafei Jiang for discussion.

Author information

Authors and Affiliations

Authors

Contributions

Li J directed the research. Zhu C, Liang JX and Meng Y conducted the DFT calculations. Zhu C, Liang JX, Xu CQ and Meng Y analyzed the data. All the authors discussed the results and co-wrote the manuscript.

Corresponding authors

Correspondence to Chun Zhu  (朱纯) or Jun Li  (李隽).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

See supplementary material for the way of oxygen-terminated Ti2C, the different adsorption sites of metal single atoms on Os1/Ti2CS2, as well as the optimized geometry of Ir1/Ti2CS2. In addition, the optimized stable structures and the calculated relative energies of different molecule adsorption on Os1/Ti2CS2 SAC are also available in the online version of the paper.

Yang Meng is a PhD candidate at the School of Chemistry and Chemical Engineering, Guizhou University, under the supervision of Prof. Chun Zhu. Her research focuses on the theoretical investigations on single-atom catalysts.

Chun Zhu received his PhD degree from the College of Chemistry and Chemical Engineering, Xiamen University in 2013, under the supervision of Prof. Zexing Cao. He worked as a visiting scholar at the Department of Chemistry and the Department of Biochemistry and Molecular Biology, Michigan State University from 2017 to 2018. He was also a visiting scholar at the Department of Chemistry, Southern University of Science and Technology. He is now a professor at the School of Chemistry and Chemical Engineering, Guizhou University. His research interests focus on the theoretical chemistry, organometallic chemistry, and computational catalysis science.

Jun Li received his PhD degree from Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences in 1992. He did postdoctoral research at the University of Siegen (Germany) and The Ohio State University (USA) from 1994 to 1997. He worked as a Research Scientist at The Ohio State University and a Senior Research Scientist and Chief Scientist at the Pacific Northwest National Laboratory (USA) from 1997 to 2009. He is now a full professor at Tsinghua University. His research involves theoretical chemistry, relativistic heavy-element chemistry, and computational catalysis science.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Liang, JX., Zhu, C. et al. Theoretical studies of MXene-supported single-atom catalysts: Os1/Ti2CS2 for low-temperature CO oxidation. Sci. China Mater. 65, 1303–1312 (2022). https://doi.org/10.1007/s40843-021-1950-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1950-0

Keywords

Navigation