Skip to main content
Log in

NiS/Ni3S2@NiWO4 nanoarrays towards all-solid-state hybrid supercapacitor with record-high energy density

NiS/Ni3S2@NiWO4纳米阵列用于构造能量密度创 新高的全固态混合超级电容器

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The rational design and synthesis of hybrid-type electrode nanomaterials are significant for their diverse applications, including their potential usage as high-efficiency nanoarchitectures for supercapacitors (SCs) as a class of promising energy-storage systems for powering next-generation electric vehicles and electronic devices. Here, we reported a facile and controllable synthesis of core-shell NiS/Ni3S2@ NiWO4 nanoarrays to fabricate a freestanding electrode for hybrid SCs. Impressively, the as-prepared freestanding NiS/Ni3S2@NiWO4 electrode presents an ultrahigh areal capacity of 2032 µA h cm−2 at 5 mA cm−2, and a capacity retention of 63.6% even when the current density increased up to 50 mA cm−2. Remarkably, the NiS/Ni3S2@NiWO4 nanoarray-based hybrid SC delivers a maximum energy density of 1.283 mW h cm−2 at 3.128 mW cm−2 and a maximum power density of 41.105 mW cm−2 at 0.753 mW h cm−2. Furthermore, the hybrid SC exhibits a capacity retention of 89.6% even after continuous 10,000 cycles, proving its superior stability. This study provides a facile pathway to rationally design a variety of core shell metal nanostructures for high performance energy storage devices.

摘要

混合型纳米电极材料的合理设计及合成对于其不同的应用 具有重要意义, 尤其是对于可用于下一代电动汽车和电子设备供 电的高效纳米结构超级电容器(SCs)储能器件. 本文报道了一种简 便可控合成核-壳NiS/Ni3S2@NiWO4纳米阵列的方法, 并将其用于 混合超级电容器的独立电极. 在5 mA cm−2的条件下, 所制备的 NiS/Ni3S2@NiWO4独立电极表现出高达2032 μA h cm−2的面积容 量; 即使电流密度增至50 mA cm−2, 其容量保留率仍为63.6%. 更重 要的是, 在功率密度为3.128 mW cm−2时, 该NiS/Ni3S2@NiWO4纳米 阵列混合超级电容器仍表现出1.283 mW h cm−2的最大能量密度; 而在能量密度为0.753 mW h cm−2时, 该超级电容器表现出的最大 功率密度为41.105 mW cm−2. 此外, 该混合超级电容器在连续 10,000次循环后仍能保持89.6%的原始容量, 从而进一步证明其优 异的稳定性. 本研究为合理设计各种核壳金属纳米结构提供了便 捷途径, 有助于促进其在高性能储能器件领域的广泛应用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shao Y, El-Kady MF, Sun J, et al. Design and mechanisms of asymmetric supercapacitors. Chem Rev, 2018, 118: 9233–9280

    Article  CAS  Google Scholar 

  2. Sheberla D, Bachman JC, Elias JS, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater, 2017, 16: 220–224

    Article  CAS  Google Scholar 

  3. Dou S, Xu J, Cui X, et al. High-temperature shock enabled nanomanufacturing for energy-related applications. Adv Energy Mater, 2020, 10: 2001331

    Article  CAS  Google Scholar 

  4. Choudhary N, Li C, Moore J, et al. Asymmetric supercapacitor electrodes and devices. Adv Mater, 2017, 29: 1605336

    Article  CAS  Google Scholar 

  5. Chen F, Ji S, Liu Q, et al. Rational design of hierarchically core-shell structured Ni3S2@NiMoO4 nanowires for electrochemical energy storage. Small, 2018, 14: 1800791

    Article  CAS  Google Scholar 

  6. Noori A, El-Kady MF, Rahmanifar MS, et al. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem Soc Rev, 2019, 48: 1272–1341

    Article  CAS  Google Scholar 

  7. Hao T, Liu Y, Liu G, et al. Insight into faradaic mechanism of polyaniline@NiSe2 core-shell nanotubes in high-performance supercapacitors. Energy Storage Mater, 2019, 23: 225–232

    Article  Google Scholar 

  8. Hussain N, Yang W, Dou J, et al. Ultrathin mesoporous F-doped α-Ni(OH)2 nanosheets as an efficient electrode material for water splitting and supercapacitors. J Mater Chem A, 2019, 7: 9656–9664

    Article  CAS  Google Scholar 

  9. Wang R, Luo Y, Chen Z, et al. The effect of loading density of nickel-cobalt sulfide arrays on their cyclic stability and rate performance for supercapacitors. Sci China Mater, 2016, 59: 629–638

    Article  CAS  Google Scholar 

  10. Nagaraju G, Sekhar SC, Bharat LK, et al. Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors. ACS Nano, 2017, 11: 10860–10874

    Article  CAS  Google Scholar 

  11. Zhang X, Su D, Wu A, et al. Porous NiCoP nanowalls as promising electrode with high-area and mass capacitance for supercapacitors. Sci China Mater, 2019, 62: 1115–1126

    Article  CAS  Google Scholar 

  12. Liu Q, Hong X, You X, et al. Designing heterostructured metal sulfide core-shell nanoneedle films as battery-type electrodes for hybrid supercapacitors. Energy Storage Mater, 2020, 24: 541–549

    Article  Google Scholar 

  13. Balamurugan J, Li C, Aravindan V, et al. Hierarchical Ni–Mo–S and Ni–Fe–S nanosheets with ultrahigh energy density for flexible all solid-state supercapacitors. Adv Funct Mater, 2018, 28: 1803287

    Article  CAS  Google Scholar 

  14. Guan BY, Yu L, Wang X, et al. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv Mater, 2017, 29: 1605051

    Article  CAS  Google Scholar 

  15. Liu Y, Wen Y, Zhang Y, et al. Reduced CoNi2S4 nanosheets decorated by sulfur vacancies with enhanced electrochemical performance for asymmetric supercapacitors. Sci China Mater, 2020, 63: 1216–1226

    Article  CAS  Google Scholar 

  16. Wu H, Lu Q, Zhang J, et al. Thermal shock-activated spontaneous growing of nanosheets for overall water splitting. Nano-Micro Lett, 2020, 12: 162

    Article  CAS  Google Scholar 

  17. He W, Wang C, Li H, et al. Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv Energy Mater, 2017, 7: 1700983

    Article  CAS  Google Scholar 

  18. Chen F, Wang H, Ji S, et al. A 3D petal-like Ni3S2/CoNi2S4 hybrid grown on Ni foam as a binder-free electrode for energy storage. Sustain Energy Fuels, 2018, 2: 1791–1798

    Article  CAS  Google Scholar 

  19. Zang X, Dai Z, Yang J, et al. Template-assisted synthesis of nickel sulfide nanowires: Tuning the compositions for supercapacitors with improved electrochemical stability. ACS Appl Mater Interfaces, 2016, 8: 24645–24651

    Article  CAS  Google Scholar 

  20. Wang X, Shi B, Fang Y, et al. High capacitance and rate capability of a Ni3S2@CdS core-shell nanostructure supercapacitor. J Mater Chem A, 2017, 5: 7165–7172

    Article  CAS  Google Scholar 

  21. Wu X, Li S, Xu Y, et al. Hierarchical heterostructures of NiO nanosheet arrays grown on pine twig-like β-NiS@Ni3S2 frameworks as free-standing integrated anode for high-performance lithium-ion batteries. Chem Eng J, 2019, 356: 245–254

    Article  CAS  Google Scholar 

  22. Xu J, Sun Y, Lu M, et al. One-step electrodeposition fabrication of Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Sci China Mater, 2018, 62: 699–710

    Article  CAS  Google Scholar 

  23. Zhou J, Yu L, Zhu Q, et al. Defective and ultrathin NiFe LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: a 3D core-shell electrocatalyst for efficient water oxidation. J Mater Chem A, 2019, 7: 18118–18125

    Article  CAS  Google Scholar 

  24. Xiong X, Zhao B, Ding D, et al. One-step synthesis of architectural Ni3S2 nanosheet-on-nanorods array for use as high-performance electrodes for supercapacitors. NPG Asia Mater, 2016, 8: e300

    Article  Google Scholar 

  25. Chen JS, Guan C, Gui Y, et al. Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density. ACS Appl Mater Interfaces, 2017, 9: 496–504

    Article  CAS  Google Scholar 

  26. Huo H, Zhao Y, Xu C. 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J Mater Chem A, 2014, 2: 15111

    Article  CAS  Google Scholar 

  27. Krishnamoorthy K, Veerasubramani GK, Radhakrishnan S, et al. One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem Eng J, 2014, 251: 116–122

    Article  CAS  Google Scholar 

  28. Chen F, Wang H, Ji S, et al. Core-shell structured Ni3S2@Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors. Chem Eng J, 2018, 345: 48–57

    Article  CAS  Google Scholar 

  29. Liu S, Lee SC, Patil UM, et al. Controllable sulfuration engineered NiO nanosheets with enhanced capacitance for high rate super-capacitors. J Mater Chem A, 2017, 5: 4543–4549

    Article  CAS  Google Scholar 

  30. Chen Y, Xu S, Li Y, et al. FeS2 nanoparticles embedded in reduced graphene oxide toward robust, high-performance electrocatalysts. Adv Energy Mater, 2017, 7: 1700482

    Article  CAS  Google Scholar 

  31. Li X, Wu H, Guan C, et al. (Ni,Co)Se2/NiCo-LDH core/shell structural electrode with the cactus-like (Ni,Co)Se2 core for asymmetric supercapacitors. Small, 2018, 14: 1803895

    Article  CAS  Google Scholar 

  32. Huang Y, Shi T, Jiang S, et al. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors. Sci Rep, 2016, 6: 38620

    Article  CAS  Google Scholar 

  33. Kong W, Lu C, Zhang W, et al. Homogeneous core–shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. J Mater Chem A, 2015, 3: 12452–12460

    Article  CAS  Google Scholar 

  34. Chen F, Wang H, Ji S, et al. Hierarchical core-shell structured CoNi2S4/Ni3S2@Ni(OH)2 nanosheet arrays as electrode for electrochemical energy storage. J Alloys Compd, 2019, 785: 684–691

    Article  CAS  Google Scholar 

  35. Zeng W, Zhang G, Wu X, et al. Construction of hierarchical CoS nanowire@NiCo2S4 nanosheet arrays via one-step ion exchange for high-performance supercapacitors. J Mater Chem A, 2015, 3: 24033–24040

    Article  CAS  Google Scholar 

  36. Chen S, Yang G, Jia Y, et al. Three-dimensional NiCo2O4@NiWO4 core-shell nanowire arrays for high performance supercapacitors. J Mater Chem A, 2017, 5: 1028–1034

    Article  CAS  Google Scholar 

  37. Sun P, He W, Yang H, et al. Hedgehog-inspired nanostructures for hydrogel-based all-solid-state hybrid supercapacitors with excellent flexibility and electrochemical performance. Nanoscale, 2018, 10: 19004–19013

    Article  CAS  Google Scholar 

  38. Chen F, Wang H, Ji S, et al. High-performance all-solid-state asymmetric supercapacitors based on sponge-like NiS/Ni3S2 hybrid nanosheets. Mater Today Energy, 2019, 11: 211–217

    Article  Google Scholar 

  39. Huang Y, Yan C, Shi X, et al. Ni0.85Co0.15WO4 nanosheet electrodes for supercapacitors with excellent electrical conductivity and capacitive performance Nano Energy, 2018, 48: 430–440

    Article  CAS  Google Scholar 

  40. Zhao J, Li Z, Zhang M, et al. Vertically cross-linked and porous CoNi2S4 nanosheets-decorated SiC nanowires with exceptional capacitive performance as a free-standing electrode for asymmetric supercapacitors J Power Sources, 2016, 332: 355–365

    Article  CAS  Google Scholar 

  41. Lu W, Shen J, Zhang P, et al. Construction of CoO/Co-Cu-S hierarchical tubular heterostructures for hybrid supercapacitors Angew Chem Int Ed, 2019, 58: 15441–15447

    Article  CAS  Google Scholar 

  42. Li C, Balamurugan J, Kim NH, et al. Hierarchical Zn-Co-S nanowires as advanced electrodes for all solid state asymmetric supercapacitors Adv Energy Mater, 2018, 8: 1702014

    Article  CAS  Google Scholar 

  43. Owusu KA, Qu L, Li J, et al. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors Nat Commun, 2017, 8: 14264

    Article  Google Scholar 

  44. Zhang Q, Liu Z, Zhao B, et al. Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors Energy Storage Mater, 2019, 16: 632–645

    Article  Google Scholar 

  45. Yang Y, Huang W, Li S, et al. Surfactant-dependent flower- and grass-like Zn0.76Co0.24S/Co3S4 for high-performance all-solid-state asymmetric supercapacitors J Mater Chem A, 2018, 6: 22830–22839

    Article  CAS  Google Scholar 

  46. Yang P, Wu Z, Jiang Y, et al. Fractal (NixCo1–x)9Se8 nanodendrite arrays with highly exposed (011) surface for wearable, all-solid-state supercapacitor Adv Energy Mater, 2018, 8: 1801392

    Article  CAS  Google Scholar 

  47. Wu J, Shi X, Song W, et al. Hierarchically porous hexagonal microsheets constructed by well-interwoven MCo2S4 (M = Ni, Fe, Zn) nanotube networks via two-step anion-exchange for high-performance asymmetric supercapacitors Nano Energy, 2018, 45: 439–447

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91963113)

Author information

Authors and Affiliations

Authors

Contributions

Chen Y and Chen F conceived the idea of this study and wrote the paper Cui X and Liu C conducted the synthesis the characterization of the electrode and revised the manuscript All authors contributed to discussion and manuscript revision

Corresponding authors

Correspondence to Yida Deng  (邓意达) or Yanan Chen  (陈亚楠).

Additional information

Conflict of interest

The authors declare no conflict of interest.

Fangshuai Chen received his MSc degree from the Northwest Normal University in 2019 He works as a research assistant at the School of Materials Science and Engineering, Tianjin University from 2019 to 2020 His current research focuses on the design and synthesis of nanoma-terials for energy storage

Yida Deng is a professor at the School of Materials Science and Engineering, Tianjin University He received his PhD from Shanghai Jiao Tong University in 2006 His research interests include metal and metal oxide nanostructures for electrochemical and energy applications

Yanan Chen is a professor at the School of Materials Science and Engineering, Tianjin University He received his joint PhD from the University of Science and Technology Beijing/University of Maryland in 2017 He was an advanced innovative fellow at Tsinghua University before joining in Tianjin University His research mainly focuses on nanomaterials, devices, and systems for advanced energy storage and conversion

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Cui, X., Liu, C. et al. NiS/Ni3S2@NiWO4 nanoarrays towards all-solid-state hybrid supercapacitor with record-high energy density. Sci. China Mater. 64, 852–860 (2021). https://doi.org/10.1007/s40843-020-1494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1494-4

Keywords

Navigation