Skip to main content
Log in

A smart hydrogel for on-demand delivery of antibiotics and efficient eradication of biofilms

可按需释放抗生素并高效清除生物被膜的智能水 凝胶

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Biofilm-associated infections are difficult to treat in the clinics because the bacteria embedded in biofilm are ten to thousand times more resistant to traditional antibiotics than planktonic ones. Here, a smart hydrogel comprised of aminoglycoside antibiotics, pectinase, and oxidized dextran was developed to treat local biofilm-associated infections. The primary amines on aminoglycosides and pectinase were reacted with aldehyde groups on oxidized dextran via a pH-sensitive Schiff base linkage to form the hydrogel. Upon bacterial infection, the increased acidity triggers the release of both pectinase and aminoglycoside antibiotics. The released pectinase efficiently degrades extracellular polysaccharides surrounding the bacteria in biofilm, and thus greatly sensitizes the bacteria to aminoglycosides. The smart hydrogel efficiently eradicated biofilms and killed the embedded bacteria both n tvitro and in vivo. This study provides a promising strategy for the treatment of biofilm-associated infections.

摘要

生物被膜相关感染在临床上的治疗难度极大, 这是由于被包 裹在被膜中的细菌对传统抗生素的抵抗力是浮游细菌的数十至数 千倍. 本文研究开发了一种由氨基糖苷类抗生素、果胶酶以及氧 化葡聚糖组成的智能水凝胶, 用于治疗与生物被膜相关的局部感 染. 氨基糖苷和果胶酶结构中的伯胺可与氧化葡聚糖的醛基形成 对pH敏感的希夫碱键, 从而形成凝胶. 当发生感染时, 局部增强的 酸性会触发果胶酶和氨基糖苷类抗生素的释放, 所释放出的果胶 酶可有效降解生物被膜中包裹在细菌周围的多糖, 从而提高细菌 对氨基糖苷类药物的敏感度. 该智能水凝胶可有效消除生物膜, 并 能在体内有效杀灭被膜中的细菌. 该研究为生物被膜相关感染的 治疗提供了一种具有良好潜力的策略.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flemming HC, Wingender J, Szewzyk U, et al. Biofilms: An emergent form of bacterial life. Nat Rev Microbiol, 2016, 14: 563–575

    Article  CAS  Google Scholar 

  2. Rybtke M, Hultqvist LD, Givskov M, et al. Pseudomonas aeruginosa biofilm infections: Community structure, antimicrobial tolerance and immune response. J Mol Biol, 2015, 427: 3628–3645

    Article  CAS  Google Scholar 

  3. de Beer D, Stoodley P, Roe F, et al. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng, 1994, 43: 1131–1138

    Article  Google Scholar 

  4. Liu R, Chen X, Falk SP, et al. Nylon-3 polymers active against drug-resistant Candida albicans biofilms. J Am Chem Soc, 2015, 137: 2183–2186

    Article  CAS  Google Scholar 

  5. Xi Y, Wang Y, Gao J, et al. Dual corona vesicles with intrinsic antibacterial and enhanced antibiotic delivery capabilities for effective treatment of biofilm-induced periodontitis. ACS Nano, 2019, 13: 13645–13657

    Article  CAS  Google Scholar 

  6. Liu Y, Shi L, Su L, et al. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev, 2019, 48: 428–446

    Article  CAS  Google Scholar 

  7. Su L, Li Y, Liu Y, et al. Recent advances and future prospects on adaptive biomaterials for antimicrobial applications. Macromol Biosci, 2019, 19: 1900289

    Article  CAS  Google Scholar 

  8. Hoffman LR, D’Argenio DA, Maccoss MJ, et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 2005, 436: 1171–1175

    Article  CAS  Google Scholar 

  9. Ashbaugh AG, Jiang X, Zheng J, et al. Polymeric nanofiber coating with tunable combinatorial antibiotic delivery prevents biofilmassociated infection in vivo. Proc Natl Acad Sci USA, 2016, 113: E6919–E6928

    Article  CAS  Google Scholar 

  10. Walther R, Nielsen SM, Christiansen R, et al. Combatting implantassociated biofilms through localized drug synthesis. J Control Release, 2018, 287: 94–102

    Article  CAS  Google Scholar 

  11. Ding X, Wang A, Tong W, et al. Biodegradable antibacterial polymeric nanosystems: A new hope to cope with multidrug-resistant bacteria. Small, 2019, 15: 1900999

    Article  CAS  Google Scholar 

  12. Ding X, Duan S, Ding X, et al. Versatile antibacterial materials: An emerging arsenal for combatting bacterial pathogens. Adv Funct Mater, 2018, 28: 1802140

    Article  CAS  Google Scholar 

  13. Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliver Rev, 2013, 65: 1803–1815

    Article  CAS  Google Scholar 

  14. Liu Y, Busscher HJ, Zhao B, et al. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in Staphylococcal biofilms. ACS Nano, 2016, 10: 4779–4789

    Article  CAS  Google Scholar 

  15. Chen X, Zhang X, Lin F, et al. One-step synthesis of epoxy groupterminated organosilica nanodots: A versatile nanoplatform for imaging and eliminating multidrug‐resistant bacteria and their biofilms. Small, 2019, 15: 1901647

    Article  CAS  Google Scholar 

  16. Ran HH, Cheng X, Bao YW, et al. Multifunctional quaternized carbon dots with enhanced biofilm penetration and eradication efficiencies. J Mater Chem B, 2019, 7: 5104–5114

    Article  CAS  Google Scholar 

  17. Lv J, Fan Q, Wang H, et al. Polymers for cytosolic protein delivery. Biomaterials, 2019, 218: 119358

    Article  CAS  Google Scholar 

  18. Zhou Z, Yan Y, Wang L, et al. Melanin-like nanoparticles decorated with an autophagy-inducing peptide for efficient targeted photothermal therapy. Biomaterials, 2019, 203: 63–72

    Article  CAS  Google Scholar 

  19. Shen W, Wang R, Fan Q, et al. Natural polyphenol inspired polycatechols for efficient siRNA delivery. CCS Chem, 2020, 2: 146–157

    Article  CAS  Google Scholar 

  20. Ren L, Lv J, Wang H, et al. A coordinative dendrimer achieves excellent efficiency in cytosolic protein and peptide delivery. Angew Chem Int Ed, 2020, 59: 4711–4719

    Article  CAS  Google Scholar 

  21. Cutrona N, Gillard K, Ulrich R, et al. From antihistamine to antiinfective: Loratadine inhibition of regulatory PASTA kinases in staphylococci reduces biofilm formation and potentiates β-lactam antibiotics and vancomycin in resistant strains of Staphylococcus aureus. ACS Infect Dis, 2019, 5: 1397–1410

    Article  CAS  Google Scholar 

  22. Shaaban M, Elgaml A, Habib ESE. Biotechnological applications of quorum sensing inhibition as novel therapeutic strategies for multidrug resistant pathogens. Microbial Pathogenesis, 2019, 127: 138–143

    Article  CAS  Google Scholar 

  23. Duan F, Feng X, Jin Y, et al. Metal-carbenicillin framework-based nanoantibiotics with enhanced penetration and highly efficient inhibition of MRSA. Biomaterials, 2017, 144: 155–165

    Article  CAS  Google Scholar 

  24. Huma Z, Javed I, Zhang Z, et al. Nanosilver mitigates biofilm formation via FapC amyloidosis inhibition. Small, 2020, 16: 1906674

    Article  CAS  Google Scholar 

  25. Xie Y, Liu Y, Yang J, et al. Gold nanoclusters for targeting methicillin- resistant Staphylococcus aureus in vivo. Angew Chem Int Ed, 2018, 57: 3958–3962

    Article  CAS  Google Scholar 

  26. Mwangi J, Yin Y, Wang G, et al. The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc Natl Acad Sci USA, 2019, 116: 26516–26522

    Article  CAS  Google Scholar 

  27. Narenji H, Teymournejad O, Rezaee MA, et al. Antisense peptide nucleic acids against ftsZ and efaA genes inhibit growth and biofilm formation of Enterococcus faecalis. Microbial Pathogenesis, 2019, 139: 103907

    Article  CAS  Google Scholar 

  28. Bordeau V, Felden B. Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone. Nucleic Acids Res, 2014, 42: 4682–4696

    Article  CAS  Google Scholar 

  29. Chen Z, Wang Z, Ren J, et al. Enzyme mimicry for combating bacteria and biofilms. Acc Chem Res, 2018, 51: 789–799

    Article  CAS  Google Scholar 

  30. Wang M, Shi J, Mao H, et al. Fluorescent imidazolium-type poly (ionic liquid)s for bacterial imaging and biofilm inhibition. Biomacromolecules, 2019, 20: 3161–3170

    Article  CAS  Google Scholar 

  31. Mauro N, Schillaci D, Varvara P, et al. Branched high molecular weight glycopolypeptide with broad-spectrum antimicrobial activity for the treatment of biofilm related infections. ACS Appl Mater Interfaces, 2018, 10: 318–331

    Article  CAS  Google Scholar 

  32. Tan H, Peng Z, Li Q, et al. The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulence- associated gene expression of antibiotic-resistant staphylococcus. Biomaterials, 2012, 33: 365–377

    Article  CAS  Google Scholar 

  33. Zeng Q, Zhu Y, Yu B, et al. Antimicrobial and antifouling polymeric agents for surface functionalization of medical implants. Biomacromolecules, 2018, 19: 2805–2811

    Article  CAS  Google Scholar 

  34. Gao Q, Feng T, Huang D, et al. Antibacterial and hydroxyapatiteforming coating for biomedical implants based on polypeptidefunctionalized titania nanospikes. Biomater Sci, 2020, 8: 278–289

    Article  Google Scholar 

  35. Zhang L, Cole JM. Anchoring groups for dye-sensitized solar cells. ACS Appl Mater Interfaces, 2015, 7: 3427–3455

    Article  CAS  Google Scholar 

  36. Hwang G, Koltisko B, Jin X, et al. Nonleachable imidazoliumincorporated composite for disruption of bacterial clustering, exopolysaccharide-matrix assembly, and enhanced biofilm removal. ACS Appl Mater Interfaces, 2017, 9: 38270–38280

    Article  CAS  Google Scholar 

  37. Siala W, Kucharikova S, Braem A, et al. The antifungal caspofungin increases fluoroquinolone activity against Staphylococcus aureus biofilms by inhibiting N-acetylglucosamine transferase. Nat Commun, 2016, 7: 13286

    Article  CAS  Google Scholar 

  38. de Miguel I, Prieto I, Albornoz A, et al. Plasmon-based biofilm inhibition on surgical implants. Nano Lett, 2019, 19: 2524–2529

    Article  CAS  Google Scholar 

  39. Zhao Y, Guo Q, Dai X, et al. A biomimetic non-antibiotic approach to eradicate drug-resistant infections. Adv Mater, 2019, 31: 1806024

    Article  CAS  Google Scholar 

  40. Deng Q, Sun P, Zhang L, et al. Porphyrin MOF dots-based, function-adaptive nanoplatform for enhanced penetration and photodynamic eradication of bacterial biofilms. Adv Funct Mater, 2019, 29: 1903018

    Article  CAS  Google Scholar 

  41. Hu D, Li H, Wang B, et al. Surface-adaptive gold nanoparticles with effective adherence and enhanced photothermal ablation of methicillin-resistant Staphylococcus aureus biofilm. ACS Nano, 2017, 11: 9330–9339

    Article  CAS  Google Scholar 

  42. Dai X, Zhao Y, Yu Y, et al. All-in-one NIR-activated nanoplatforms for enhanced bacterial biofilm eradication. Nanoscale, 2018, 10: 18520–18530

    Article  CAS  Google Scholar 

  43. Jia Q, Song Q, Li P, et al. Rejuvenated photodynamic therapy for bacterial infections. Adv Healthcare Mater, 2019, 8: 1900608

    Article  CAS  Google Scholar 

  44. Jennings LK, Storek KM, Ledvina HE, et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci USA, 2015, 112: 11353–11358

    Article  CAS  Google Scholar 

  45. Colvin KM, Irie Y, Tart CS, et al. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ MicroBiol, 2012, 14: 1913–1928

    Article  CAS  Google Scholar 

  46. Kashyap DR, Vohra PK, Chopra S, et al. Applications of pectinases in the commercial sector: A review. Bioresource Tech, 2001, 77: 215–227

    Article  CAS  Google Scholar 

  47. Villa F, Secundo F, Polo A, et al. Immobilized hydrolytic enzymes exhibit antibiofilm activity against Escherichia coli at sub-lethal concentrations. Curr Microbiol, 2015, 71: 106–114

    Article  CAS  Google Scholar 

  48. Borszcz V, Boscato TP, Flach J, et al. Bacterial biofilm removal using solid-state-produced enzymes. Industrial Biotech, 2017, 13: 311–318

    Article  CAS  Google Scholar 

  49. Singh V, Verma N, Banerjee B, et al. Enzymatic degradation of bacterial biofilms using Aspergillus clavatus MTCC 1323. Microbiology, 2015, 84: 59–64

    Article  CAS  Google Scholar 

  50. Li S, Dong S, Xu W, et al. Antibacterial hydrogels. Adv Sci, 2018, 5: 1700527

    Article  CAS  Google Scholar 

  51. Wang X, Wang C, Wang X, et al. A polydopamine nanoparticleknotted poly(ethylene glycol) hydrogel for on-demand drug delivery and chemo-photothermal therapy. Chem Mater, 2017, 29: 1370–1376

    Article  CAS  Google Scholar 

  52. Hu J, Chen Y, Li Y, et al. A thermo-degradable hydrogel with lighttunable degradation and drug release. Biomaterials, 2017, 112: 133–140

    Article  CAS  Google Scholar 

  53. Wang C, Wang D, Dai T, et al. Skin pigmentation-inspired polydopamine sunscreens. Adv Funct Mater, 2018, 28: 1802127

    Article  CAS  Google Scholar 

  54. Cheng X, Li M, Wang H, et al. All-small-molecule dynamic covalent gels with antibacterial activity by boronate-tannic acid gelation. Chin Chem Lett, 2020, 31: 869–874

    Article  CAS  Google Scholar 

  55. Hu J, Wang H, Hu Q, et al. G-quadruplex-based antiviral hydrogels by direct gelation of clinical drugs. Mater Chem Front, 2019, 3: 1323–1327

    Article  CAS  Google Scholar 

  56. Wang J, Chen G, Zhao Z, et al. Responsive graphene oxide hydrogel microcarriers for controllable cell capture and release. Sci China Mater, 2018, 61: 1314–1324

    Article  CAS  Google Scholar 

  57. Hu J, Quan Y, Lai Y, et al. A smart aminoglycoside hydrogel with tunable gel degradation, on-demand drug release, and high antibacterial activity. J Control Release, 2017, 247: 145–152

    Article  CAS  Google Scholar 

  58. Liu Z, Guo K, Zhao N, et al. Polysaccharides-based nanohybrids: promising candidates for biomedical materials. Sci China Mater, 2019, 62: 1831–1836

    Article  Google Scholar 

  59. Hu J, Zheng Z, Liu C, et al. A pH-responsive hydrogel with potent antibacterial activity against both aerobic and anaerobic pathogens. Biomater Sci, 2019, 7: 581–584

    Article  CAS  Google Scholar 

  60. Dai T, Wang C, Wang Y, et al. A nanocomposite hydrogel with potent and broad-spectrum antibacterial activity. ACS Appl Mater Interfaces, 2018, 10: 15163–15173

    Article  CAS  Google Scholar 

  61. de Breij A, Riool M, Cordfunke RA, et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med, 2018, 10: eaan4044

    Article  CAS  Google Scholar 

  62. Li M, Wang H, Hu J, et al. Smart hydrogels with antibacterial properties built from all natural building blocks. Chem Mater, 2019, 31: 7678–7685

    Article  CAS  Google Scholar 

  63. Hu J, Hu Q, He X, et al. Stimuli-responsive hydrogels with antibacterial activity assembled from guanosine, aminoglycoside, and a bifunctional anchor. Adv Healthcare Mater, 2020, 9: 1901329

    Article  CAS  Google Scholar 

  64. Wang H, Cheng Y. All-small-molecule dynamic covalent hydrogels with multistimuli responsiveness. Mater Chem Front, 2019, 3: 472–475

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China, Synthetic Biology Research (2019YFA0904500), the National Natural Science Foundation of China (21725402 and 51672191), and the Natural Science Foundation of Shanghai (19ZR1415600). The authors acknowledge the ECNU Multifunctional Platform for Innovation (011) for the animal experiments.

Author information

Authors and Affiliations

Authors

Contributions

Hu J prepared and evaluated the in vitro antibacterial properties of the hydrogels; Hu J, Zhang C, Zhou L and Kong Y performed the in vivo experiments; Hu Q contributed to the physicochemical characterization of the hydrogel; Song D, Zhang Y and Cheng Y designed and supervised the study and wrote the manuscript. All the authors contributed to the general discussion.

Corresponding authors

Correspondence to Dianwen Song  (宋滇文), Yiyun Cheng  (程义云) or Yadong Zhang  (张亚东).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Jingjing Hu is an associate professor of biomaterials at the School of Life Science, East China Normal University. She received her PhD degree from the University of Science and Technology of China. Her research interests mainly focus on the design of antibacterial materials and smart hydrogels.

Dianwen Song is a full professor and chief physician at the Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University. He received his MD and PhD degrees from the Second Military Medical University. His research interests focus on the development of tissue-engineered bone and mechanism of bone metastasis in malignancies.

Yiyun Cheng is a full professor of biomedical engineering at the School of Life Sciences, East China Normal University. He received his PhD degree from the University of Science and Technology of China and was a postdoctoral fellow at Washington University in St. Louis, MO. His research interests focus on the rational design of polymers for the delivery of biomacromolecules.

Yadong Zhang is a chief physician and professor at the Department of Orthopaedics, Fengxian Hospital affiliated to Southern Medical University. He received his PhD from Shanghai Jiao Tong University. He is expert in the treatment of spinal diseases. His research interests focus on the design of smart hydrogels and nanomedicines for bone repair and the treatment of bacterial infection.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Zhang, C., Zhou, L. et al. A smart hydrogel for on-demand delivery of antibiotics and efficient eradication of biofilms. Sci. China Mater. 64, 1035–1046 (2021). https://doi.org/10.1007/s40843-020-1480-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1480-3

Keywords

Navigation