Skip to main content
Log in

Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications

二维有机-无机杂化钙钛矿: 从材料性能到器件应用

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The two-dimensional (2D) perovskite (including pure-2D and quasi-2D) is formed by introducing large-group ammonium halides into conventional bulk perovskite. In the past twenty years, 2D perovskite materials were widely developed with the enriched species and advanced physical-knowledge in material characteristics as well as optoelectronic device applications. To review achievments in 2D perovskite, the fundamental mechanism and properties of 2D perovskite are introduced to offer insight into device performance. Moreover, the preparation methods of 2D perovskite films are summarized and compared. The latest successful applications of the 2D perovskite in the solar cells and light-emitting diodes fields, especially the advanced stability of 2D perovskite solar cells (PeSCs) and the efficient 2D perovskite light-emitting diodes (PeLEDs), are also achieved. Furthermore, the challenges and outlook of 2D perovskite materials are proposed.

摘要

二维(2D)钙钛矿材料(包括纯2D和准2D)是在传统意义上的三维钙钛矿晶格中插入大基团卤化铵形成的. 在过去的20年里, 二维钙钛矿材料种类不断丰富, 相关理论研究不断深入, 在光电器件领域的应用不断拓展. 本综述介绍了2D钙钛矿材料的基本形成机制和性能, 汇总和比较了2D钙钛矿薄膜的制备方法, 并给出了其在太阳电池以及发光二极管领域的应用实例. 最后, 提出了该领域亟待解决的问题, 以及未来的研究趋势.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weber D. CH3NH3SnBrxI3-x (x=0–3), ein Sn(II)-System mit kubischer Perowskitstruktur/CH3NH3SnBrxI3-x (x=0–3), a Sn(II)-system with cubic perovskite structure. Zeitschrift für Naturforschung B, 1978, 33: 862–865

    Article  Google Scholar 

  2. Weber D. CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur/CH3NH3PbX3, a Pb(II)-System with cubic perovskite structure. Zeitschrift für Naturforschung B, 1978, 33: 1443–1445

    Article  Google Scholar 

  3. Li M, Wang ZK, Zhuo MP, et al. Pb-Sn-Cu ternary organometallic halide perovskite solar cells. Adv Mater, 2018, 131: 1800258

    Article  CAS  Google Scholar 

  4. Wang ZK, Li M, Yang YG, et al. High efficiency Pb-In binary metal perovskite solar cells. Adv Mater, 2016, 28: 6695–6703

    Article  CAS  Google Scholar 

  5. Sun S, Salim T, Mathews N, et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ Sci, 2014, 7: 399–407

    Article  CAS  Google Scholar 

  6. Tsai H, Nie W, Blancon JC, et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 2016, 536: 312–316

    Article  CAS  Google Scholar 

  7. Lim KG, Kim HB, Jeong J, et al. Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv Mater, 2014, 26: 6461–6466

    Article  CAS  Google Scholar 

  8. Tyagi P, Arveson SM, Tisdale WA. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. J Phys Chem Lett, 2015, 6: 1911–1916

    Article  CAS  Google Scholar 

  9. Li N, Zhu Z, Chueh CC, et al. Mixed cation FAxPEA1-xPbI3 with enhanced phase and ambient stability toward high-performance perovskite solar cells. Adv Energy Mater, 2017, 7: 1601307

    Article  CAS  Google Scholar 

  10. Saparov B, Mitzi DB. Organic–inorganic perovskites: structural versatility for functional materials design. Chem Rev, 2016, 116: 4558–4596

    Article  CAS  Google Scholar 

  11. Wang N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photonics, 2016, 10: 699–704

    Article  CAS  Google Scholar 

  12. Yuan M, Quan LN, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol, 2016, 11: 872–877

    Article  CAS  Google Scholar 

  13. Koh TM, Shanmugam V, Schlipf J, et al. Nanostructuring mixeddimensional perovskites: a route toward tunable, efficient photovoltaics. Adv Mater, 2016, 28: 3653–3661

    Article  CAS  Google Scholar 

  14. Cao DH, Stoumpos CC, Farha OK, et al. 2D homologous perovskites as light-absorbing materials for solar cell applications. J Am Chem Soc, 2015, 137: 7843–7850

    Article  CAS  Google Scholar 

  15. Hu H, Salim T, Chen B, et al. Molecularly engineered organicinorganic hybrid perovskite with multiple quantum well structure for multicolored light-emitting diodes. Sci Rep, 2016, 6: 33546

    Article  CAS  Google Scholar 

  16. Milot RL, Sutton RJ, Eperon GE, et al. Charge-carrier dynamics in 2D hybrid metal–halide perovskites. Nano Lett, 2016, 16: 7001–7007

    Article  CAS  Google Scholar 

  17. Xing G, Mathews N, Sun S, et al. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342: 344–347

    Article  CAS  Google Scholar 

  18. Eperon GE, Burlakov VM, Docampo P, et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater, 2014, 24: 151–157

    Article  CAS  Google Scholar 

  19. Docampo P, Ball JM, Darwich M, et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun, 2013, 4: 2761

    Article  CAS  Google Scholar 

  20. Liang PW, Liao CY, Chueh CC, et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv Mater, 2014, 26: 3748–3754

    Article  CAS  Google Scholar 

  21. Xue M, Zhou H, Xu Y, et al. High-performance ultraviolet-visible tunable perovskite photodetector based on solar cell structure. Sci China Mater, 2017, 60: 407–414

    Article  CAS  Google Scholar 

  22. Ding J, Yan Q. Progress in organic-inorganic hybrid halide perovskite single crystal: growth techniques and applications. Sci China Mater, 2017, 60: 1063–1078

    Article  Google Scholar 

  23. Ren Y, Duan B, Xu Y, et al. New insight into solvent engineering technology from evolution of intermediates via one-step spincoating approach. Sci China Mater, 2017, 60: 392–398

    Article  CAS  Google Scholar 

  24. Pascoe AR, Gu Q, Rothmann MU, et al. Directing nucleation and growth kinetics in solution-processed hybrid perovskite thinfilms. Sci China Mater, 2017, 60: 617–628

    Article  CAS  Google Scholar 

  25. Deng Y, Peng E, Shao Y, et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ Sci, 2015, 8: 1544–1550

    Article  CAS  Google Scholar 

  26. Barrows AT, Pearson AJ, Kwak CK, et al. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ Sci, 2014, 7: 2944–2950

    Article  CAS  Google Scholar 

  27. Chen H, Ye F, Tang W, et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 2017, 131: 92–95

    Google Scholar 

  28. Ye F, Tang W, Xie F, et al. Low-temperature soft-cover deposition of uniform large-scale perovskite films for high-performance solar cells. Adv Mater, 2017, 29: 1701440

    Article  CAS  Google Scholar 

  29. Kind R. Structural phase transitions in perovskite layer structures. Ferroelectrics, 1980, 24: 81–88

    Article  CAS  Google Scholar 

  30. Arend H, Huber W, Mischgofsky FH, et al. Layer perovskites of the (CnH2n+1NH3)2MX4 and NH3(CH2)mNH3MX4 families with M = Cd, Cu, Fe, Mn or Pd and X = Cl or Br: Importance, solubilities and simple growth techniques. J Cryst Growth, 1978, 43: 213–223

    Article  CAS  Google Scholar 

  31. Swetha T, Singh SP. Perovskite solar cells based on small molecule hole transporting materials. J Mater Chem A, 2015, 3: 18329–18344

    Article  CAS  Google Scholar 

  32. Ishihara T, Takahashi J, Goto T. Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Commun, 1989, 69: 933–936

    Article  CAS  Google Scholar 

  33. Ishihara T, Takahashi J, Goto T. Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. Phys Rev B, 1990, 42: 11099–11107

    Article  CAS  Google Scholar 

  34. Calabrese J, Jones NL, Harlow RL, et al. Preparation and characterization of layered lead halide compounds. J Am Chem Soc, 1991, 113: 2328–2330

    Article  CAS  Google Scholar 

  35. Mitzi DB, Feild CA, Harrison WTA, et al. Conducting tin halides with a layered organic-based perovskite structure. Nature, 1994, 369: 467–469

    Article  CAS  Google Scholar 

  36. Papavassiliou GC, Koutselas IB. Structural, optical and related properties of some natural three- and lower-dimensional semiconductor systems. Synth Met, 1995, 71: 1713–1714

    Article  CAS  Google Scholar 

  37. Mitzi DB, Chondroudis K, Kagan CR. Design, structure, and optical properties of organic−inorganic perovskites containing an oligothiophene chromophore. Inorg Chem, 1999, 38: 6246–6256

    Article  CAS  Google Scholar 

  38. Cheng Z, Lin J. Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm, 2010, 12: 2646–2662

    Article  CAS  Google Scholar 

  39. Huang TJ, Thiang ZX, Yin X, et al. (CH3NH3)2PdCl4: A compound with two-dimensional organic-inorganic layered perovskite structure. Chem Eur J, 2016, 22: 2146–2152

    Article  CAS  Google Scholar 

  40. Yao K, Wang X, Xu Y, et al. Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell. Chem Mater, 2016, 28: 3131–3138

    Article  CAS  Google Scholar 

  41. Kawano N, Koshimizu M, Sun Y, et al. Effects of organic moieties on luminescence properties of organic–inorganic layered perovskite-type compounds. J Phys Chem C, 2014, 118: 9101–9106

    Article  CAS  Google Scholar 

  42. Kitazawa N, Watanabe Y. Optical properties of natural quantumwell compounds (C6H5-CnH2n-NH3)2PbBr4 (n=1–4). J Phys Chem Solids, 2010, 71: 797–802

    Article  CAS  Google Scholar 

  43. Even J, Pedesseau L, Katan C. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites. ChemPhysChem, 2014, 15: 3733–3741

    Article  CAS  Google Scholar 

  44. Chong WK, Thirumal K, Giovanni D, et al. Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films. Phys Chem Chem Phys, 2016, 18: 14701–14708

    Article  CAS  Google Scholar 

  45. Kamminga ME, Fang HH, Filip MR, et al. Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem Mater, 2016, 28: 4554–4562

    Article  CAS  Google Scholar 

  46. Mitzi DB, Wang S, Feild CA, et al. Conducting layered organicinorganic halides containing (110)-oriented perovskite sheets. Science, 1995, 267: 1473–1476

    Article  CAS  Google Scholar 

  47. Mitzi DB. Solution-processed inorganic semiconductors. J Mater Chem, 2004, 14: 2355–2365

    Article  CAS  Google Scholar 

  48. Mitzi DB, Medeiros DR, Malenfant PRL. Intercalated organicinorganic perovskites stabilized by fluoroaryl-aryl interactions. Inorg Chem, 2002, 41: 2134–2145

    Article  CAS  Google Scholar 

  49. Quan LN, Yuan M, Comin R, et al. Ligand-stabilized reduceddimensionality perovskites. J Am Chem Soc, 2016, 138: 2649–2655

    Article  CAS  Google Scholar 

  50. Lin Y, Bai Y, Fang Y, et al. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett, 2017, 2: 1571–1572

    Article  CAS  Google Scholar 

  51. Cai B, Li X, Gu Y, et al. Quantum confinement effect of twodimensional all-inorganic halide perovskites. Sci China Mater, 2017, 60: 811–818

    Article  Google Scholar 

  52. Dou L, Wong AB, Yu Y, et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349: 1518–1521

    Article  CAS  Google Scholar 

  53. Ishihara T. Optical properties of PbI-based perovskite structures. J Lumin, 1994, 60-61: 269–274

    Article  CAS  Google Scholar 

  54. Grancini G, Roldán-Carmona C, Zimmermann I, et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat Commun, 2017, 8: 15684

    Article  CAS  Google Scholar 

  55. Byun J, Cho H, Wolf C, et al. Efficient visible quasi-2D perovskite light-emitting diodes. Adv Mater, 2016, 28: 7515–7520

    Article  CAS  Google Scholar 

  56. Jones ED, Drummond TJ, Hjalmarson HP, et al. Photoluminescence studies of GaAs/AlAs short period superlattices. Superlattices MicroStruct, 1988, 4: 233–236

    Article  CAS  Google Scholar 

  57. Yaffe O, Chernikov A, Norman ZM, et al. Excitons in ultrathin organic-inorganic perovskite crystals. Phys Rev B, 2015, 92: 045414

    Article  CAS  Google Scholar 

  58. Kitazawa N, Aono M, Watanabe Y. Synthesis and luminescence properties of lead-halide based organic–inorganic layered perovskite compounds (CnH2n+1NH3)2PbI4 (n=4, 5, 7, 8 and 9). J Phys Chem Solids, 2011, 72: 1467–1471

    Article  CAS  Google Scholar 

  59. Hong X, Ishihara T, Nurmikko AV. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys Rev B, 1992, 45: 6961–6964

    Article  CAS  Google Scholar 

  60. Savenije TJ, Ponseca Jr. CS, Kunneman L, et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. J Phys Chem Lett, 2014, 5: 2189–2194

    Article  CAS  Google Scholar 

  61. Yang Y, Ostrowski DP, France RM, et al. Observation of a hotphonon bottleneck in lead-iodide perovskites. Nat Photonics, 2016, 10: 53–59

    Article  CAS  Google Scholar 

  62. Chondroudis K, Mitzi DB. Electroluminescence from an organic −inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem Mater, 1999, 11: 3028–3030

    Article  CAS  Google Scholar 

  63. Mitzi DB. Templating and structural engineering in organic–inorganic perovskites. J Chem Soc Dalton Trans, 2001, 1–12

    Google Scholar 

  64. Jeon NJ, Noh JH, Kim YC, et al. Solvent engineering for highperformance inorganic–organic hybrid perovskite solar cells. Nat Mater, 2014, 13: 897–903

    Article  CAS  Google Scholar 

  65. Burschka J, Pellet N, Moon SJ, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499: 316–319

    Article  CAS  Google Scholar 

  66. You J, Hong Z, Yang YM, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8: 1674–1680

    Article  CAS  Google Scholar 

  67. Liu D, Kelly TL. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics, 2014, 8: 133–138

    Article  CAS  Google Scholar 

  68. Chen Q, Zhou H, Hong Z, et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc, 2013, 136: 622–625

    Article  CAS  Google Scholar 

  69. Xiao M, Huang F, Huang W, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thinfilm solar cells. Angew Chem, 2014, 126: 10056–10061

    Article  Google Scholar 

  70. Li X, Bi D, Yi C, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353: 58–62

    Article  CAS  Google Scholar 

  71. Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501: 395–398

    Article  CAS  Google Scholar 

  72. Hu H, Wang D, Zhou Y, et al. Vapour-based processing of holeconductor- free CH3NH3PbI3 perovskite/C60 fullerene planar solar cells. RSC Adv, 2014, 4: 28964–28967

    Article  CAS  Google Scholar 

  73. Kim J, Kim G, Kim TK, et al. Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer. J Mater Chem A, 2014, 2: 17291–17296

    Article  CAS  Google Scholar 

  74. Wang KC, Shen PS, Li MH, et al. Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl Mater Interfaces, 2014, 6: 11851–11858

    Article  CAS  Google Scholar 

  75. Ding X, Ren Y, Wu Y, et al. Sequential deposition method fabricating carbonbased fully-inorganic perovskite solar cells. Sci China Mater, 2018, 61: 73–79

    Article  Google Scholar 

  76. Chiang CH, Tseng ZL, Wu CG. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. J Mater Chem A, 2014, 2: 15897–15903

    Article  CAS  Google Scholar 

  77. Xiao Z, Bi C, Shao Y, et al. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ Sci, 2014, 7: 2619–2623

    Article  CAS  Google Scholar 

  78. Guo Q, Li C, Qiao W, et al. The growth of a CH3NH3PbI3 thin film using simplified close space sublimation for efficient and large dimensional perovskite solar cells. Energy Environ Sci, 2016, 9: 1486–1494

    Article  CAS  Google Scholar 

  79. Smith IC, Hoke ET, Solis-Ibarra D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem, 2014, 126: 11414–11417

    Article  Google Scholar 

  80. Cortecchia D, Dewi HA, Yin J, et al. Lead-free MA2CuClxBr4–x hybrid perovskites. Inorg Chem, 2016, 55: 1044–1052

    Article  CAS  Google Scholar 

  81. Liang D, Peng Y, Fu Y, et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano, 2016, 10: 6897–6904

    Article  CAS  Google Scholar 

  82. Li Y, Cooper JK, Liu W, et al. Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nat Commun, 2016, 7: 12446

    Article  CAS  Google Scholar 

  83. Wang YK, Yuan ZC, Shi GZ, et al. Dopant-free spiro-triphenylamine/ fluorene as hole-transporting material for perovskite solar cells with enhanced efficiency and stability. Adv Funct Mater, 2016, 26: 1375–1381

    Article  CAS  Google Scholar 

  84. Zhang F, Yi C, Wei P, et al. A novel dopant-free triphenylamine based molecular “butterfly” hole-transport material for highly efficient and stable perovskite solar cells. Adv Energy Mater, 2016, 6: 1600401

    Article  CAS  Google Scholar 

  85. You J, Meng L, Song TB, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol, 2015, 11: 75–81

    Article  CAS  Google Scholar 

  86. Ma S, Qiao W, Cheng T, et al. Optical–electrical–chemical engineering of PEDOT:PSS by incorporation of hydrophobic nafion for efficient and stable perovskite solar cells. ACS Appl Mater Interfaces, 2018, 10: 3902–3911

    Article  CAS  Google Scholar 

  87. Li W, Zhang W, Van Reenen S, et al. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ Sci, 2016, 9: 490–498

    Article  CAS  Google Scholar 

  88. Ma Y, Deng K, Gu B, et al. Boosting Efficiency and Stability of Perovskite Solar Cells with CdS Inserted at TiO2 /Perovskite Interface. Adv Mater Interfaces, 2016, 3: 1600729

    Article  CAS  Google Scholar 

  89. Ye QQ, Wang ZK, Li M, et al. N-type doping of fullerenes for planar perovskite solar cells. ACS Energy Lett, 2018, 3: 875–882

    Article  CAS  Google Scholar 

  90. Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354: 206–209

    Article  CAS  Google Scholar 

  91. Liao JF, Rao HS, Chen BX, et al. Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells. J Mater Chem A, 2017, 5: 2066–2072

    Article  CAS  Google Scholar 

  92. Cao DH, Stoumpos CC, Yokoyama T, et al. Thin films and solar cells based on semiconducting two-dimensional ruddlesden–popper (CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 Perovskites. ACS Energy Lett, 2017, 2: 982–990

    Article  CAS  Google Scholar 

  93. Cohen BE, Wierzbowska M, Etgar L. High efficiency and high open circuit voltage in quasi 2D perovskite based solar cells. Adv Funct Mater, 2017, 27: 1604733

    Article  CAS  Google Scholar 

  94. Hamaguchi R, Yoshizawa-Fujita M, Miyasaka T, et al. Formamidine and cesium-based quasi-two-dimensional perovskites as photovoltaic absorbers. Chem Commun, 2017, 53: 4366–4369

    Article  CAS  Google Scholar 

  95. Yao K, Wang X, Xu Y, et al. A general fabrication procedure for efficient and stable planar perovskite solar cells: Morphological and interfacial control by in-situ-generated layered perovskite. Nano Energy, 2015, 18: 165–175

    Article  CAS  Google Scholar 

  96. Wang F, Geng W, Zhou Y, et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and airstable photovoltaic cells. Adv Mater, 2016, 28: 9986–9992

    Article  CAS  Google Scholar 

  97. Cho KT, Grancini G, Lee Y, et al. Selective growth of layered perovskites for stable and efficient photovoltaics. Energy Environ Sci, 2018, 11: 952–959

    Article  CAS  Google Scholar 

  98. Cho H, Jeong SH, Park MH, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350: 1222–1225

    Article  CAS  Google Scholar 

  99. Tan ZK, Moghaddam RS, Lai ML, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9: 687–692

    Article  CAS  Google Scholar 

  100. Li G, Tan ZK, Di D, et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett, 2015, 15: 2640–2644

    Article  CAS  Google Scholar 

  101. Sadhanala A, Ahmad S, Zhao B, et al. Blue-green color tunable solution processable organolead chloride–bromide mixed halide perovskites for optoelectronic applications. Nano Lett, 2015, 15: 6095–6101

    Article  CAS  Google Scholar 

  102. Gong X, Yang Z, Walters G, et al. Highly efficient quantum dot near-infrared light-emitting diodes. Nat Photon, 2016, 10: 253–257

    Article  CAS  Google Scholar 

  103. Wang J, Wang N, Jin Y, et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv Mater, 2015, 27: 2311–2316

    Article  CAS  Google Scholar 

  104. Ling Y, Yuan Z, Tian Y, et al. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Adv Mater, 2016, 28: 305–311

    Article  CAS  Google Scholar 

  105. Xing J, Yan F, Zhao Y, et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano, 2016, 10: 6623–6630

    Article  CAS  Google Scholar 

  106. Yang X, Zhang X, Deng J, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat Commun, 2018, 9: 570

    Article  CAS  Google Scholar 

  107. Mitzi DB, Chondroudis K, Kagan CR. Organic-inorganic electronics. IBM J Res Dev, 2001, 45: 29–45

    Article  CAS  Google Scholar 

  108. Gauthron K, Lauret JS, Doyennette L, et al. Optical spectroscopy of two-dimensional layered (C6H5C2H4NH3)2-PbI4 perovskite. Opt Express, 2010, 18: 5912–5919

    Article  CAS  Google Scholar 

  109. Era M, Morimoto S, Tsutsui T, et al. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl Phys Lett, 1994, 65: 676–678

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2016YFA0202401), the 111 Project (B16016), the National Natural Science Foundation of China (51572080, 51702096 and U1705256), and the Fundamental Research Funds for the Central Universities (2017XS080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Ding  (丁勇), Zhan’ao Tan  (谭占鳌) or Songyuan Dai  (戴松元).

Additional information

Shuang Ma obtained her BSc degree from North China Electric Power University in 2015. She is a PhD candidate of the North China Electric Power University under the supervision of Prof. Yong Ding and Prof. Songyuan Dai. Her research interest is perovskite solar cells.

Yong Ding is a lecturer in Beijing Key Lab of Novel Thin Film Solar Cells, North China Electric Power University. He received his PhD in physical chemistry from Hefei Institutes of Physical Science, Chinese Academy of Sciences in 2011. His research interest is novel-type solar cells, including dye-sensitized solar cells and perovskite solar cells.

Zhan’ao Tan is a full professor in Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, since 2009, and currently leads the Group of Organic Optoelectronic Materials and Devices. He received his PhD degree in physical chemistry in 2007 from Institute of Chemistry, Chinese Academy of Sciences and then came to Pennsylvania State University, USA, as a postdoctoral fellow working on semiconductor quantum dots based light-emitting diodes and photovoltaics from 2007 to 2009. His present research interest includes polymer solar cells, semiconductor nanocrystal based optoelectronics, organic-inorganic hybrid perovskite solar cells, and flow batteries.

Songyuan Dai is a Professor and Dean of Renewable Energy School, North China Electric Power University. He received his BS from Department of Physics, Anhui Normal University in 1987, and his MSc and PhD degrees from Institute of Plasma Physics, Chinese Academy of Sciences, in 1991, and 2001, respectively. His current research interests include dye-sensitized solar cell, perovskite solar cells, quantum dot solar cells and nanomaterials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Cai, M., Cheng, T. et al. Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications. Sci. China Mater. 61, 1257–1277 (2018). https://doi.org/10.1007/s40843-018-9294-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-018-9294-5

Keywords

Navigation