Skip to main content
Log in

Remarks on Hypersurfaces in a Unit Sphere

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In 1973, D. A. Hoffman proved that a complete immersed surface in \(\mathbb {S}^3\) with constant mean curvature \(H\ne 0\) and Gauss curvature which does not change sign must be a sphere or a flat torus. For the n-dimensional case with \(n\ge 3\), we prove that Hoffman’s theorem cannot be extended when we consider constant higher-order mean curvature \(H_r\), \(2\le r<n\), and Gauss–Kronecker curvature K, instead of the mean curvature H and Gauss curvature, respectively. More precisely, we show the existence of non-isoparametric hypersurfaces \(\Sigma \) in \(\mathbb {S}^{n+1}\), \(n\ge 3\), with constant higher-order mean curvature and whose Gauss–Kronecker curvature K does not change sign. Besides, we also derive estimates for the infimum and the supremum of the principal curvatures of a hypersurface with constant higher-order mean curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Alencar, H., do Carmo, M.: Hypersurfaces with constant mean curvature in spheres. Proc. Am. Math. Soc., 120(4), 1223–1229 (1994)

  2. Alías, L. J., Jr. Aldir, B., Perdomo, O.: A characterization of quadric constant mean curvature hypersurfaces of spheres. J. Geom. Anal., 18(3), 687–703 (2008)

  3. Alías, L.J., García-Martínez, S.C.: An estimate for the scalar curvature of constant mean curvature hypersurfaces in space forms. Geom. Dedicata 156, 31–47 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alías, L.J., García-Martínez, S.C., Rigoli, M.: A maximum principle for hypersurfaces with constant scalar curvature and applications. Ann. Glob. Anal. Geom. 41, 307–320 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alías, L.J., Meléndez, J.: Hypersurfaces with constant higher order mean curvature in Euclidean space. Geom. Dedicata 182, 117–131 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alías, L.J., Meléndez, J.: Remarks on hypersurfaces with constant higher order mean curvature in Euclidean space. Geom. Dedicata 199, 273–280 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dajczer, M., Tojeiro, R.: Submanifold theory. Beyond an introduction. Universitext. Springer, New York. xx+628 pp (2019)

  8. Espinar, J., Rosenberg, H.: Complete constant mean curvature surfaces in homogeneous spaces. Comment. Math. Helv. 86, 659–674 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cecil, T.E., Ryan, P.J.: Geometry of Hypersurfaces. Springer, New York, xi+596 (2015)

  10. do Carmo, M., Dajczer, M.: Rotation hypersurfaces in spaces of constant curvature. Trans. AMS 277(2), 685–709 (1983)

  11. Hoffman, D.A.: Surfaces of constant mean curvature in manifolds of constant curvature. J. Differ. Geom. 8, 161–176 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klotz, T., Osserman, R.: Complete surfaces in \(E^3\) with constant mean curvature. Comment. Math. Helv. 41, 313–318 (1966/1967)

  13. Núñez, R.A.: On complete hypersurfaces with constant mean and scalar curvatures in Euclidean spaces. Proc. Am. Math. Soc. 145(6), 2677–2688 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Smyth, B., Xavier, F.: Efimov’s theorem in dimension greater than two. Invent. Math. 90, 443–450 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Manzano, J.M., Torralbo, F., Van der Veken, J.: Parallel Mean Curvature Surfaces in Four-Dimensional Homogeneous Spaces, Proceedings Book of International Workshop on Theory of Submanifolds (Volume: 1 (2016)) June 2–4. Istanbul, Turkey (2016)

    Google Scholar 

  16. Meléndez, J., Palmas, O.: Hypersurfaces with constant higher order mean curvature in space forms. Differ. Geom. Appl. 51, 15–32 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Min, S.-H., Seo, K.: A characterization of Clifford hypersurfaces among embedded constant mean curvature hypersurfaces in a unit sphere. Math. Res. Lett. 24(2), 503–534 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Palmas, O.: Complete rotational hypersurfaces with \(H_r\) constant in space forms. Bull. Braz. Math. Soc. 30(2), 139–161 (1999)

    Article  MATH  Google Scholar 

  19. Perdomo, O.M.: Embedded constant mean curvature hypersurfaces on spheres. Asian J. Math. 14(1), 73–108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Perdomo, O.M.: CMC hypersurfaces on Riemannian and semi-Riemannian manifolds. Math. Phys. Anal. Geom. 15(1), 17–37 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Perdomo, O.M.: Spectrum of the Laplacian and the Jacobi operator on rotational CMC hypersurfaces of spheres. Pacific J. Math. 308(2), 419–433 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Smyth, B.: Efimov’s inequality and other inequalities in a sphere. Geometry and topology of submanifolds, IV (Leuven,: 76–86, p. 1992. World Sci. Publ, River Edge, NJ (1991)

Download references

Acknowledgements

The author would like to thank the referee for reading the manuscript in great detail and giving several valuable suggestions and useful comments which improved the paper. The author was partially supported by programa especial de apoyo a proyectos de docencia e investigación de la UAM: “Ecuaciones diferenciales y geometría diferencial con aplicaciones a las ciencias.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josué Meléndez.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by Pablo Mira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About Theorem 1

About Theorem 1

In this appendix, we obtain Theorem 1 from [11, Theorem 4.1]. Let \(\Sigma ^n\) and \({\overline{M}}^{n+k} \) be Riemannian manifolds of dimension n and \(n + k\), respectively. Throughout the Appendix we use \(\Sigma ^n \hookrightarrow {\overline{M}}^{n+k}\) to denote an isometric immersion of \(\Sigma \) in \({\overline{M}}.\)

Remember that the Gauss formula of \(\Sigma ^n \hookrightarrow {\overline{M}}^{n+k}\) is

$$\begin{aligned} {\overline{\nabla }}_X Y=\nabla _X Y+B(X,Y), \end{aligned}$$

which is valid for all \(X,Y \in {\mathfrak {X}}(\Sigma )\). Here, \(\nabla , {\overline{\nabla }}\) are the Riemannian connections of \(\Sigma ^n\) and \({\overline{M}}^{n+k}\), respectively, and B is the second fundamental form of \(\Sigma \). The mean curvature vector field \(\textbf{H}\in {\mathfrak {X}}^\perp (\Sigma )\) of \(\Sigma ^n\) in \({\overline{M}}\) is given by

$$\begin{aligned} \textbf{H}=\frac{1}{n}\sum _{i=1}^n B(e_i,e_i), \end{aligned}$$

where \(\{e_1,\dots ,e_n\}\) is a local orthonormal frame on \(\Sigma \).

Definition 14

An isometric immersion \(\Sigma ^n \hookrightarrow {\overline{M}}^{n+k}\) is said to have parallel mean curvature if \(\textbf{H}\) is parallel in the normal bundle, i.e., \({\overline{\nabla }}^\perp \textbf{H} =0\).

Remark 15

The following properties follow directly from the definition:

  1. 1.

    If \(\textbf{H}\) is parallel, then \(\vert \textbf{H} \vert \) is constant.

  2. 2.

    If \(\textbf{H}\ne 0\), \(\textbf{H}\) is parallel if and only if \(\vert \textbf{H}\vert \) is constant and \(\textbf{H}/\vert \textbf{H}\vert \) is parallel.

  3. 3.

    If the codimension \(k=1\), \(\textbf{H}\) is parallel if and only if \(\vert \textbf{H} \vert \) is constant.

Now we consider a surface \(\Sigma ^2\) isometrically immersed in \({\overline{M}}^4(c)\), a 4-manifold with constant sectional cuavature c.

Theorem 16

(Theorem 4.1 in [11]). A complete immersed surface \(\Sigma ^2 \hookrightarrow {\overline{M}}^4(c)\), \(c\ge 0\), with parallel mean curvature and Gauss curvature K which does not change sign must be minimal (\(\textbf{H}\equiv 0\)), a sphere of radius \((\vert \textbf{H} \vert ^2 + c)^{-\frac{1}{2}} \) or a product of circles \({\mathbb {S}}^1(s) \times {\mathbb {S}}^1(t)\), \(0<s \le \infty \), \(0< t < \infty \), with the standard product immersion.

Remark 17

In particular, consider the immersion \(\Sigma ^2 \hookrightarrow {\mathbb {S}}^4\) with parallel mean curvature \(\textbf{H} \ne 0\). If \(\Sigma \) is not totally umbilical and its Gaussian curvature K does not change sign, then \(K=0\) and \(\Sigma \) must be a product of circles \({\mathbb {S}}^1(s) \times {\mathbb {S}}^1(t)\), \(s^2+t^2=1\).

We first look at a surface \(\Sigma ^2\) isometrically immersed in\({\mathbb {S}}^3\). Then, we use the canonical embedding of \({\mathbb {S}}^3\) in \({\mathbb {S}}^4\) to obtain the immersion of \(\Sigma \) in \({\mathbb {S}}^4\). It is well known that \( {\mathbb {S}}^3\) is totally geodesic submanifold of \({\mathbb {S}}^4\), that is, their Riemannian connections coincide. Let \(A =\{e_1, e_2, e_3, e_4\}\) be an adapted frame to \(\Sigma \) (in \({\mathbb {S}}^4\)) such that

$$\begin{aligned} e_1, e_2 \in T\Sigma , \qquad \quad e_3 \in T{\mathbb {S}}^3\subset T{\mathbb {S}}^4 \qquad \text {and} \qquad e_4 \in T^\perp {\mathbb {S}}^3 \subset T{\mathbb {S}}^4. \end{aligned}$$

Then, the mean curvature vector field of \(\Sigma \hookrightarrow {\mathbb {S}}^4\) is given by

$$\begin{aligned} \textbf{H}= \frac{1}{2} (\lambda _{11}^3+\lambda _{22}^3) e_3 + \frac{1}{2} (\lambda _{11}^4+\lambda _{22}^4) e_4 \end{aligned}$$
(29)

where \(\lambda _{ij}^\alpha = \langle B(e_i,e_j), e_\alpha \rangle \), \(\alpha =3,4\), and B is the second fundamental form of the immersion \(\Sigma \hookrightarrow {\mathbb {S}}^4\).

Now suppose that the immersion \(\Sigma \hookrightarrow {\mathbb {S}}^3\) has constant nonzero mean curvature. In view of Theorem 16 (see also Remark 17), it is sufficient to show that \(\textbf{H}\) is parallel (see also Section 3 in [15] for more general cases). Let

$$\begin{aligned} \mu _{ij}^{3} = \langle B_\Sigma ^{{\mathbb {S}}^3} (e_i,e_j), e_3 \rangle \end{aligned}$$

where \(B_\Sigma ^{{\mathbb {S}}^3}\) is the second fundamental form of \(\Sigma \hookrightarrow {\mathbb {S}}^3\). One can check directly that

for \(X,Y \in T\Sigma \). It follows that

$$\begin{aligned} \lambda _{ij}^{3} = \langle B(e_i,e_j), e_3 \rangle = \langle B_\Sigma ^{{\mathbb {S}}^3} (e_i,e_j), e_3 \rangle = \mu _{ij}^{3}. \end{aligned}$$

On the other hand, since \( B_\Sigma ^{{\mathbb {S}}^3} \in T {\mathbb {S}}^3 \) and \(e_4 \in T^\perp {\mathbb {S}}^3\) we get that

$$\begin{aligned} \lambda _{ij}^{4} = \langle B(e_i,e_j), e_4 \rangle = \langle B_\Sigma ^{{\mathbb {S}}^3} (e_i,e_j), e_4 \rangle =0. \end{aligned}$$

Thus, (29) reduces to

$$\begin{aligned} \textbf{H}= \frac{1}{2} \left( \lambda _{11}^3+\lambda _{22}^3\right) e_3 =H e_3, \qquad \text {where }H=\frac{1}{2} \left( \lambda _{11}^3+\lambda _{22}^3\right) \text { is constant.} \end{aligned}$$

From this we notice that \(\vert \textbf{H}\vert = \vert H\vert \) is also constant. Furthermore, since \(\textbf{H} \in T {\mathbb {S}}^4\) and \({\mathbb {S}}^3\) is a totally geodesic submanifold of \({\mathbb {S}}^4\),

$$\begin{aligned} {\overline{\nabla }}_{X}^{\perp }\, \textbf{H} = \langle {\overline{\nabla }}_X \, \textbf{H}, e_3\rangle e_3 = H \langle {\overline{\nabla }}_X \, e_3, e_3\rangle e_3 =0. \end{aligned}$$

Thus, the immersion \(\Sigma ^2 \hookrightarrow {\mathbb {S}}^{4}\) has parallel mean curvature \(\textbf{H}\ne 0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meléndez, J. Remarks on Hypersurfaces in a Unit Sphere. Bull. Malays. Math. Sci. Soc. 46, 168 (2023). https://doi.org/10.1007/s40840-023-01565-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40840-023-01565-4

Keywords

Mathematics Subject Classification

Navigation