Skip to main content
Log in

Dynamics of a Harvested Predator–Prey Model with Predator-Taxis

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

Effects of predator-taxis on the dynamics of a predator–prey model with Michaelis–Menten type nonlinear harvesting are considered in this paper. Through theoretical analysis of quasilinear parabolic equations, the local existence, global existence and boundedness of solutions to the system are first established. Then the formation mechanisms of spatiotemporal patterns in such model are explored. It is found that only the attractive predator-taxis will lead to the Turing bifurcation and the corresponding spatiotemporal solutions; meanwhile, no such phenomenon occurs with the repulsive taxis or in the absence of predator-taxis. Moreover, the diffusion ratio can affect the Turing bifurcation thresholds, and nonlinear harvesting can affect the spatial distribution of prey and predator species. Further, the stability of the nonconstant steady state bifurcated from the Turing bifurcation is analyzed through the amplitude equation, so that the direction of the Turing bifurcation is determined. Effectiveness of the analysis is illustrated in the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bentout, S., Djilali, S., Atangana, A.: Bifurcation analysis of an age-structured prey-predator model with infection developed in prey. Math. Methods Appl. Sci. 45, 1189–1208 (2022)

    MathSciNet  Google Scholar 

  2. Chen, M.X., Wu, R.C., Wang, X.H.: Non-constant steady states and Hopf bifurcation of a species interaction model. Commun. Nonlinear Sci. Numer. Simul. 116, 106846 (2023)

    MathSciNet  MATH  Google Scholar 

  3. Adak, D., Bairagi, N., Hakl, R.: Chaos in delay-induced Leslie-Gower prey-predator-parasite model and its control through prey harvesting. Nonlinear Anal. RWA 51, 102998 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Alidousti, J.: Stability and bifurcation analysis for a fractional prey-predator scavenger model. Appl. Math. Model. 81, 342–355 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Zhang, T.R., Wang, W.D., Wang, K.F.: Minimal wave speed for a class of non-cooperative diffusion-reaction system. J. Differ. Equ. 260(3), 2763–2791 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Dong, F.D., Li, W.T., Zhang, G.B.: Invasion traveling wave solutions of a predator-prey model with nonlocal dispersal. Commun. Nonlinear Sci. Numer. Simul. 79, 104926 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Chowdhury, P.R., Petrovskii, S., Banerjee, M.: Oscillations and pattern formation in a slow-fast prey-predator system. Bull. Math. Biol. 83, 110 (2021)

    MathSciNet  MATH  Google Scholar 

  8. Jana, D., Batabyal, S., Lakshmanan, M.: Self-diffusion-driven pattern formation in prey-predator system with complex habitat under fear effect. Eur. Phys. J. Plus 135, 884 (2020)

    Google Scholar 

  9. Bai, D.Y., Kang, Y., Ruan, S.G., et al.: Dynamics of an intraguild predation food web model with strong Allee effect in the basal prey. Nonlinear Anal. RWA 58, 103206 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Hung, K.C.: Bifurcation curves of a Dirichlet problem with geometrically concave nonlinearity and an application to the generalized logistic growth model. Proc. Am. Math. Soc. 149, 1117–1126 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. 97, 5–60 (1965)

    Google Scholar 

  12. Yi, F.Q., Wei, J.J., Shi, J.P.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J. Differ. Equ. 246, 1944–1977 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Ko, W., Ryu, K.: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Equ. 231, 534–550 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Medvinsky, S.V., Petrovskii, I.A., Tikhonova, H., et al.: Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44, 311–370 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Dai, G., Tang, M.: Coexistence region and global dynamics of a harvested predator-prey system. SIAM J. Appl. Math. 58, 193–210 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Xiao, D., Jennings, L.: Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting. SIAM J. Appl. Math. 65, 737–753 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Zhang, X.B., Zhao, H.Y.: Dynamics analysis of a delayed reaction-diffusion predator-prey system with non-continuous threshold harvesting. Math. Biosci. 289, 130–141 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Lv, Y.F., Pei, Y.Z., Wang, Y.: Bifurcations and simulations of two predator-prey models with nonlinear harvesting. Chaos Solitons Fractals 120, 158–170 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Tiwari, V., Tripathi, J.P., Abbas, S., et al.: Qualitative analysis of a diffusive Crowley-Martin predator-prey model: the role of nonlinear predator harvesting. Nonlinear Dyn. 98, 1169–1189 (2019)

    Google Scholar 

  20. Chen, M.X., Wu, R.C., Liu, B., et al.: Pattern selection in a predator-prey model with Michaelis-Menten type nonlinear predator harvesting. Ecol. Complex. 36, 239–249 (2018)

    Google Scholar 

  21. Li, Y., Wang, M.X.: Hopf bifurcation and global stability of a delayed predator-prey model with prey harvesting. Comput. Math. Appl. 69, 398–410 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Pal, D., Mahapatra, G.S., Samanta, G.P.: Stability and bionomic analysis of fuzzy prey-predator harvesting model in presence of toxicity: A dynamic approach. Bull. Math. Biol. 78, 1493–1519 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Kaur, M., Rani, R., Bhatia, R.: Dynamical study of quadrating harvesting of a predator-prey model with Monod-Haldane functional response. J. Appl. Math. Comput. 66, 397–422 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Clark, C.W.: Aggregation and fishery dynamics: a theoretical study of schooling and the purse seine tuna fisheries. Fish. Bull. 77(2), 317–337 (1979)

    Google Scholar 

  25. Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting. J. Math. Anal. Appl. 398(1), 278–295 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Kareiva, P., Odell, G.: Swarms of predators exhibit prey taxis if individual predators use area-restricted search. Am. Nat. 130, 233–270 (1987)

    Google Scholar 

  27. Chen, M.X., Zheng, Q.Q.: Predator-taxis creates spatial pattern of a predator-prey model. Chaos Solitons Fractals 161(3), 112332 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Fuest, M.: Global solution near homogeneous steady state in a multidimensional population model with both predator-and prey-taxis. SIAM J. Math. Anal. 52, 5865–5891 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Li, D.: Global stability in a multi-dimensional predator-prey system with prey-taxis. Discrete Contin. Dyn. Syst. 41, 1681–1705 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Mishra, P., Wrzosek, D.: Repulsive chemotaxis and predator evasion in predator-prey models with diffusion and prey-taxis. Math. Model. Methods Appl. Sci. 32, 1–42 (2022)

    MathSciNet  MATH  Google Scholar 

  31. Gao, J.P., Guo, S.J.: Effect of prey-taxis and diffusion on positive steady states for a predator-prey system. Math. Methods Appl. Sci. 41, 3570–3587 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Ahn, I., Yoon, C.: Global solvability of prey-predator models with indirect predator-taxis. Z. Angew. Math. Phys. 72, 29 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Wu, S.N., Wang, J.F., Shi, J.P.: Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis. Math. Model. Methods Appl. Sci. 28, 2275–2312 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Dong, Y.X., Wu, D.Y., Shen, C.S., et al.: Influence of fear effect and predator-taxis sensitivity on dynamical behavior of a predator-prey model. Z. Angew. Math. Phys. 73, 25 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Amann, H.: Dynamic theory of quasilinear parabolic equations II. Differ. Integral Equ. 3(1), 13–75 (1990)

    MATH  Google Scholar 

  36. Alikakos, N.D.: L\(^p\) bounds of solutions of reaction-diffusion equations. Commun. Part. Differ. Equ. 48(8), 827–868 (1979)

    MathSciNet  MATH  Google Scholar 

  37. Amann, H.: Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems (1993). https://doi.org/10.1007/978-3-663-11336-2_1

  38. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola. Norm. Sup. Pisa. 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  40. Tao, Y., Winkler, M.: Blow-up prevention by quadratic degradation in a two-dimension Leller-Segel-Navier-Stokes system. Z. Angew. Math. Phys. 67(6), 138 (2016)

    MATH  Google Scholar 

  41. Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65, 553–583 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Chen, M.X., Wu, R.C., Liu, B., et al.: Spatiotemporal dynamics in a ratio-dependent predator-prey model with time delay near the Turing-Hopf bifurcation point. Commun. Nonlinear Sci. Numer. Simul. 77, 141–167 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Geng, D.X., Jiang, W.H., Lou, Y., et al.: Spatiotemporal patterns in a diffusive predator-prey system with nonlocal intraspecific prey competition. Stud. Appl. Math. 148, 396–432 (2021)

    MathSciNet  Google Scholar 

  44. Xu, X.F., Wei, J.J.: Turing-Hopf bifurcation of a classs of modified Leslie-Gower model with diffusion. Discrete Contin. Dyn. Syst. B 23, 765–783 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Song, Y.L., Jiang, H.P., Yuan, Y.: Turing-Hopf bifurcation in the reaction-diffusion system with delay and application to a diffusive predator-prey model. J. Appl. Anal. Comput. 9, 1132–1164 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for their detailed comments and valuable suggestions, which greatly improved the present manuscript. This work was supported by the National Natural Science Foundation of China (No. 11971032) and China Postdoctoral Science Foundation (No. 2021M701118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranchao Wu.

Additional information

Communicated by Shangjiang Guo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wu, R. Dynamics of a Harvested Predator–Prey Model with Predator-Taxis. Bull. Malays. Math. Sci. Soc. 46, 76 (2023). https://doi.org/10.1007/s40840-023-01470-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40840-023-01470-w

Keywords

Mathematics Subject Classification

Navigation