Skip to main content
Log in

Some Approximation Results for Bayesian Posteriors that Involve the Hurwitz–Lerch Zeta Distribution

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

Consider the generalized Poisson and the negative binomial model with mean parameter equal to kb, where \(k \ge 0\) is a count parameter and \(0< b < 1\) is a hyperparameter. We show that conditioning on counts from both models and assuming a uniform prior for k lead to the following Bayesian posterior distributions: (i) geometric for conditioning value of 0; (ii) extended negative binomial for conditioning value of 1; (iii) approximately extended Hurwitz–Lerch zeta distribution for conditioning value of 2 or more. Kullback–Leibler divergence for measuring the quality of the approximating distributions for some combinations of b and the mean–variance ratio is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

None

Code Availability

R package used: VGAM [23]. R codes for reproducing the analyses are available at https://github.com/Divo-Lee/R-Code/blob/main/Post_dist.R

References

  1. Consul, P.C., Jain, G.C.: A generalization of the Poisson distribution. Technometrics 15(4), 791–799 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Joe, H., Zhu, R.: Generalized Poisson distribution: the property of mixture of Poisson and comparison with negative binomial distribution. Biom. J. 47(2), 219–229 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Nikoloulopoulos, A.K., Karlis, D.: On modeling count data: a comparison of some well-known discrete distributions. J. Stat. Comput. Simul. 78(3), 437–457 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Shoukri, M., Consul, P.: Some chance mechanisms generating the generalized Poisson probability models. In: Biostatistics, pp. 259–268. Springer, Dordrecht (1987)

  5. Consul, P.C.: Generalized Poisson Distribution: Properties and Applications. Marcel Dekker, Marcel Dekker, New York (1989)

    MATH  Google Scholar 

  6. Srivastava, S., Chen, L.: A two-parameter generalized Poisson model to improve the analysis of RNA-seq data. Nucleic Acids Res. 38(17), 170 (2010)

    Article  Google Scholar 

  7. Li, W., Jiang, T.: Transcriptome assembly and isoform expression level estimation from biased RNA-Seq reads. Bioinformatics 28(22), 2914–2921 (2012)

    Article  Google Scholar 

  8. Zhang, J., Kuo, C.-C.J., Chen, L.: WemIQ: an accurate and robust isoform quantification method for RNA-seq data. Bioinformatics 31(6), 878–885 (2015)

    Article  Google Scholar 

  9. Wang, Z., Wang, J., Wu, C., Deng, M.: Estimation of isoform expression in RNA-seq data using a hierarchical Bayesian model. J. Bioinform. Comput. Biol. 13(06), 1542001 (2015)

    Article  Google Scholar 

  10. Low, J.Z.-B., Khang, T.F., Tammi, M.T.: CORNAS: coverage-dependent RNA-Seq analysis of gene expression data without biological replicates. BMC Bioinformatics 17, 575 (2017)

    Article  Google Scholar 

  11. Anscombe, F.: The statistical analysis of insect counts based on the negative binomial distribution. Biometrics 5(2), 165–173 (1949)

    Article  Google Scholar 

  12. Bliss, C.I., Fisher, R.A.: Fitting the negative binomial distribution to biological data. Biometrics 9(2), 176–200 (1953)

    Article  MathSciNet  Google Scholar 

  13. White, G.C., Bennetts, R.E.: Analysis of frequency count data using the negative binomial distribution. Ecology 77(8), 2549–2557 (1996)

    Article  Google Scholar 

  14. Anders, S., Huber, W.: Differential expression analysis for sequence count data. Genome Biol. 11, 106 (2010)

    Article  Google Scholar 

  15. Hardcastle, T.J., Kelly, K.A.: baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11(1), 422 (2010)

    Article  Google Scholar 

  16. Wu, H., Wang, C., Wu, Z.: A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics 14(2), 232–243 (2013)

    Article  Google Scholar 

  17. Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550 (2014)

    Article  Google Scholar 

  18. Gupta, P.L., Gupta, R.C., Ong, S.H., Srivastava, H.: A class of Hurwitz-Lerch Zeta distributions and their applications in reliability. Appl. Math. Comput. 196(2), 521–531 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Bateman, H.: Higher Transcendental Functions, vol. 1. McGraw-Hill Book Company, New York (1953)

    Google Scholar 

  20. Liew, K.W., Ong, S.H., Toh, K.K.: The Poisson-stopped Hurwitz-Lerch zeta distribution. Communications in Statistics - Theory and Methods 51(16), 5638–5652 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gupta, R.C.: Modifed power series distribution and some of its applications. Sankhya, Series B 36(3), 288–298 (1974)

    MathSciNet  MATH  Google Scholar 

  22. Laforgia, A., Natalini, P.: On the asymptotic expansion of a ratio of gamma functions. J. Math. Anal. Appl. 389(2), 833–837 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yee, T.W.: VGAM: Vector Generalized Linear and Additive Models. (2022). R package version 1.1-7. https://CRAN.R-project.org/package=VGAM

Download references

Acknowledgements

We thank two anonymous reviewers for their constructive comments which helped improve the clarity of the present work.

Funding

None

Author information

Authors and Affiliations

Authors

Contributions

TFK was involved in the conceptualisation; all authors contributed to the methodology, formal analysis, writing—original draft preparation and writing—review and editing.

Corresponding author

Correspondence to Tsung Fei Khang.

Ethics declarations

Conflict of interest:

None

Ethics approval:

Not applicable

Consent to participate:

Not applicable

Consent for publication:

Both authors agree to publish

Additional information

Communicated by Rosihan M. Ali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Khang, T.F. Some Approximation Results for Bayesian Posteriors that Involve the Hurwitz–Lerch Zeta Distribution. Bull. Malays. Math. Sci. Soc. 46, 72 (2023). https://doi.org/10.1007/s40840-023-01463-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40840-023-01463-9

Keywords

Mathematics Subject Classification

Navigation