Skip to main content
Log in

Global Large Solutions to the 3-D Generalized Incompressible Navier–Stokes Equations

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, we prove the global well-posedness of the 3-D generalized incompressible Navier–Stokes equations in critical Besov spaces under a polynomial smallness assumption on the initial data. Moreover, we construct a class of initial data with large vertical component, which satisfies that polynomial condition but cannot satisfy the exponential condition in Liu (2020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)

  2. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4) 14(2), 209–246 (1981)

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J., Pavlović, N.: Ill-posedness of the Navier–Stokes equations in a critical space in 3D. J. Funct. Anal. 255(9), 2233–2247 (2008)

    Article  MathSciNet  Google Scholar 

  4. Cannone, M.: A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat. Iberoamericana 13(3), 515–541 (1997)

    Article  MathSciNet  Google Scholar 

  5. Chemin, J.-Y., Gallagher, I.: Wellposedness and stability results for the Navier–Stokes equations in \({\bf R}^3\). Ann. Inst. H. Poincaré Anal. Non Linéaire 26(2), 599–624 (2009)

    Article  MathSciNet  Google Scholar 

  6. Chemin, J.-Y., Gallagher, I.: Large, global solutions to the Navier–Stokes equations, slowly varying in one direction. Trans. Am. Math. Soc. 362(6), 2859–2873 (2010)

    Article  MathSciNet  Google Scholar 

  7. Chemin, J.-Y., Gallagher, I., Paicu, M.: Global regularity for some classes of large solutions to the Navier–Stokes equations. Ann. Math. (2) 173(2), 983–1012 (2011)

    Article  MathSciNet  Google Scholar 

  8. Chemin, J.-Y., Lerner, N.: Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes. J. Differ. Equ. 121(2), 314–328 (1995)

    Article  Google Scholar 

  9. Deng, C., Yao, X.: Well-posedness and ill-posedness for the 3D generalized Navier–Stokes equations in \(\dot{F}_{\frac{3}{\alpha -1}}^{-\alpha, r}\). Discret. Contin. Dyn. Syst. 34(2), 437–459 (2014)

    MathSciNet  Google Scholar 

  10. Dong, H., Li, D.: Optimal local smoothing and analyticity rate estimates for the generalized Navier–Stokes equations. Commun. Math. Sci. 7(1), 67–80 (2009)

    Article  MathSciNet  Google Scholar 

  11. Fan, J., Fukumoto, Y., Zhou, Y.: Logarithmically improved regularity criteria for the generalized Navier–Stokes and related equations. Kinet. Relat. Models 6(3), 545–556 (2013)

    Article  MathSciNet  Google Scholar 

  12. Fan, J., Jiang, S., Nakamura, G., Zhou, Y.: Logarithmically improved regularity criteria for the Navier–Stokes and MHD equations. J. Math. Fluid Mech. 13(4), 557–571 (2011)

    Article  MathSciNet  Google Scholar 

  13. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  Google Scholar 

  14. Guo, Z., Kučera, P., Skalák, Z.: The application of anisotropic Troisi inequalities to the conditional regularity for the Navier–Stokes equations. Nonlinearity 31(8), 3707–3725 (2018)

    Article  MathSciNet  Google Scholar 

  15. Guo, Z., Li, Y., Skalák, Z.: Regularity criteria of the incompressible Navier–Stokes equations via only one entry of velocity gradient. J. Math. Fluid Mech. 21(3), 35 (2019)

    Article  MathSciNet  Google Scholar 

  16. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    Article  MathSciNet  Google Scholar 

  17. Huang, C., Wang, B.: Analyticity for the (generalized) Navier–Stokes equations with rough initial data (2013). arXiv:1310.2141

  18. Kato, T.: Strong \(L^{p}\)-solutions of the Navier–Stokes equation in \({\bf R}^{m}\), with applications to weak solutions. Math. Z. 187(4), 471–480 (1984)

    Article  MathSciNet  Google Scholar 

  19. Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157(1), 22–35 (2001)

    Article  MathSciNet  Google Scholar 

  20. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  21. Li, P., Zhai, Z.: Generalized Navier–Stokes equations with initial data in local \(Q\)-type spaces. J. Math. Anal. Appl. 369(2), 595–609 (2010)

    Article  MathSciNet  Google Scholar 

  22. Li, P., Zhai, Z.: Well-posedness and regularity of generalized Navier–Stokes equations in some critical \(Q\)-spaces. J. Funct. Anal. 259(10), 2457–2519 (2010)

    Article  MathSciNet  Google Scholar 

  23. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  24. Liu, Q.: Space-time regularity of the mild solutions to the incompressible generalized Navier–Stokes equations with small rough initial data. Nonlinear Anal. Real World Appl. 22, 373–387 (2015)

    Article  MathSciNet  Google Scholar 

  25. Liu, Q.: Global well-posedness of the generalized incompressible Navier–Stokes equations with large initial data. Bull. Malays. Math. Sci. Soc. 43(3), 2549–2564 (2020)

    Article  MathSciNet  Google Scholar 

  26. Wang, B.: Ill-posedness for the Navier–Stokes equations in critical Besov spaces \(\dot{B}_{\infty, q}^{-1}\). Adv. Math. 268, 350–372 (2015)

    Article  MathSciNet  Google Scholar 

  27. Wu, J.: Generalized MHD equations. J. Differ. Equ. 195(2), 284–312 (2003)

    Article  MathSciNet  Google Scholar 

  28. Wu, J.: The generalized incompressible Navier–Stokes equations in Besov spaces. Dyn. Partial Differ. Equ. 1(4), 381–400 (2004)

    Article  MathSciNet  Google Scholar 

  29. Wu, J.: Lower bounds for an integral involving fractional Laplacians and the generalized Navier–Stokes equations in Besov spaces. Commun. Math. Phys. 263(3), 803–831 (2006)

    Article  MathSciNet  Google Scholar 

  30. Wu, H., Fan, J.: Weak-strong uniqueness for the generalized Navier–Stokes equations. Appl. Math. Lett. 25(3), 423–428 (2012)

    Article  MathSciNet  Google Scholar 

  31. Wu, G., Yuan, J.: Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces. J. Math. Anal. Appl. 340(2), 1326–1335 (2008)

    Article  MathSciNet  Google Scholar 

  32. Yoneda, T.: Ill-posedness of the 3D-Navier–Stokes equations in a generalized Besov space near \({\rm BMO}^{-1}\). J. Funct. Anal. 258(10), 3376–3387 (2010)

    Article  MathSciNet  Google Scholar 

  33. Yu, X., Zhai, Z.: Well-posedness for fractional Navier–Stokes equations in the largest critical spaces \(\dot{B}^{-(2\beta -1)}_{\infty,\infty }({\mathbb{R}}^n)\). Math. Methods Appl. Sci. 35(6), 676–683 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Zhai, C.: Global solutions for the 3-D incompressible nonhomogeneous MHD equations. Nonlinear Anal. 169, 163–189 (2018)

    Article  MathSciNet  Google Scholar 

  35. Zhai, C., Zhang, T.: Global well-posedness to the 3-D incompressible inhomogeneous Navier–Stokes equations with a class of large velocity. J. Math. Phys. 56(9), 091512 (2015)

    Article  MathSciNet  Google Scholar 

  36. Zhang, S.: A class of global large solutions to the compressible Navier–Stokes–Korteweg system in critical Besov spaces. J. Evol. Equ. (2020). https://doi.org/10.1007/s00028-020-00565-2

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhao, J., Zheng, L.: Temporal decay for the generalized Navier–Stokes equations. Nonlinear Anal. 141, 191–210 (2016)

    Article  MathSciNet  Google Scholar 

  38. Zhou, Y.: Asymptotic stability for the 3D Navier–Stokes equations. Commun. Partial Differ. Equ. 30(1–3), 323–333 (2005)

    Article  MathSciNet  Google Scholar 

  39. Zhou, Y.: A new regularity criterion for weak solutions to the Navier–Stokes equations. J. Math. Pures Appl. (9) 84(11), 1496–1514 (2005)

    Article  MathSciNet  Google Scholar 

  40. Zhou, Y., Pokorný, M.: On the regularity of the solutions of the Navier–Stokes equations via one velocity component. Nonlinearity 23(5), 1097–1107 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunhang Zhang.

Additional information

Communicated by Yong Zhou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S. Global Large Solutions to the 3-D Generalized Incompressible Navier–Stokes Equations. Bull. Malays. Math. Sci. Soc. 44, 2101–2121 (2021). https://doi.org/10.1007/s40840-020-01051-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-020-01051-1

Keywords

Mathematics Subject Classification

Navigation