Skip to main content
Log in

Lewis Model Revisited: Option Pricing with Lévy Processes

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

This paper aims to discuss the mathematical details in Lewis’ model by considering the analyticity and integrability conditions of characteristic functions and payoff functions of contingent claims. In his seminal paper, Lewis shows that it is much easier to compute the option value in the Fourier space than computing in terminal security price space. He computes the option value as an integral in the Fourier space, the integrand being some elementary functions and the characteristic functions of a wide range of Lévy processes. The model also illustrates how the residue calculus leads to several variations of option formulas through the contour integrals. In this paper, we provide with, to a reasonable extent, some rigor into the mathematical background of Lewis’ model and validate his results for particular Lévy processes. We also simply give the analyticity conditions for the characteristic function of the Carr–Geman–Madan–Yor model and a simple derivation of the characteristic function of Kou’s double exponential model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Actually the story goes back to Bachelier’s thesis in 1900, and to other precursors such as [8, 14, 44, 48].

  2. For Titchmarsh’s proof to be complete, using the notation there, one has to show that

    $$\begin{aligned} \lim _{\lambda \rightarrow +\infty }\int _{-\lambda }^{\lambda }F(t)G(t)\hbox {d}t = \lim _{\lambda \rightarrow +\infty } \int _{-\infty }^{\infty }F(t)G(t)\hbox {e}^{-\frac{t^2}{4\lambda }}\hbox {d}t. \end{aligned}$$

    The limits need not even exist unless FG is integrable, but this is not guaranteed by the assumptions in the theorem.

References

  1. Andersen, L.B.G., Lake, M.: Heston....again?! Robust high-precision option pricing by Fourier transforms: contour deformations and double-exponential quadrature. Wilmott J. 2019(102), 22–41 (2019). https://doi.org/10.1002/wilm.10774

    Article  Google Scholar 

  2. Bakshi, G., Madan, D.: Spanning and derivative-security valuation. J. Financ. Econ. 55(2), 205–238 (2000)

    Google Scholar 

  3. Barndorff-Nielsen, O.E., Mikosch, T., Resnick, S.I.: Lévy Processes: Theory and Applications. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  4. Bertoin, J.: Lévy processes, volume 121 of Cambridge Tracts in Mathematics (1996)

  5. Binkowski, K., Kozek, A.: Models for option pricing based on empirical characteristic function of returns. Banach Cent. 90, 13–26 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Binkowski, K., Kozek, A.: Uniform convergence of empirical characteristic functions in a complex domain with applications to option pricing. Stat. Probabil. Lett. 80(5–6), 270–276 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)

    MathSciNet  MATH  Google Scholar 

  8. Boness, A.J.: Elements of a theory of stock-option value. J. Polit. Econ. 72(2), 163–175 (1964)

    Google Scholar 

  9. Boyarchenko, M., Levendorskiĭ, S.: Prices and sensitivities of barrier and first-touch digital options in Lévy-driven models. Int. J. Theor. Appl. Finance 12(08), 1125–1170 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Boyarchenko, M., Levendorskiĭ, S.: Valuation of continuously monitored double barrier options and related securities. Math. Financ. 22(3), 419–444 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Boyarchenko, S., Levendorskiĭ, S.: Efficient variations of the Fourier transform in applications to option pricing. J. Comput. Finance 18(2), 57–90 (2014)

    Google Scholar 

  12. Boyarchenko, S.I., Levendorskiĭ, S.Z.: Option pricing for truncated Lévy processes. Int. J. Theor. Appl. Finance 3(03), 549–552 (2000)

    MATH  Google Scholar 

  13. Boyarchenko, S.I., Levendorskiĭ, S.Z.: Non-Gaussian Merton-Black-Scholes Theory, Advanced Series Statistics Science Applied Probability, vol. 9. World Scientific Publishing Co., River Edge, NJ (2002)

    Google Scholar 

  14. Bronzin, V.: Theorie der Prämiengeschäfte. Franz Deuticke, Leipzig, Wien (1908)

    Google Scholar 

  15. Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75(2), 305–332 (2002)

    Google Scholar 

  16. Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Finance 2(4), 61–73 (1999)

    Google Scholar 

  17. Çınlar, E.: Probability and Stochastics, Graduate Texts in Mathematics, vol. 261. Springer, New York (2011)

    MATH  Google Scholar 

  18. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  19. Crocce, F., Häppölä, J., Kiessling, J., Tempone, R.: Error analysis in Fourier methods for option pricing. J. Comput. Finance 21(1), 53–82 (2017)

    Google Scholar 

  20. Duffie, D., Filipović, D., Schachermayer, W.: Affine processes and applications in finance. Ann. Appl. Probab. 13(3), 984–1053 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68(6), 1343–1376 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Dufresne, D., Garrido, J., Morales, M.: Fourier inversion formulas in option pricing and insurance. Methodol. Comput. Appl. Probab. 11(3), 359–383 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Dupire, B.: Pricing with a smile. Risk 7(1), 18–20 (1994)

    Google Scholar 

  24. Eberlein, E., Glau, K., Papapantoleon, A.: Analysis of Fourier transform valuation formulas and applications. Appl. Math. Finance 17(3), 211–240 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Gamelin, T.W.: Complex Analysis. Springer, New York (2001)

    MATH  Google Scholar 

  26. Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econom. Theory 20(3), 381–408 (1979)

    MathSciNet  MATH  Google Scholar 

  27. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Stud. 6(2), 327–343 (1993)

    MathSciNet  MATH  Google Scholar 

  28. Hull, J., White, A.: The pricing of options on assets with stochastic volatilities. J. Finance 42(2), 281–300 (1987)

    MATH  Google Scholar 

  29. Kou, S.G.: A jump-diffusion model for option pricing. Manage. Sci. 48(8), 1086–1101 (2002)

    MATH  Google Scholar 

  30. Lee, R.W.: Option pricing by transform methods: extensions, unification and error control. J. Comput. Finance 7(3), 51–86 (2004)

    Google Scholar 

  31. Levendorskiĭ, S.: Pricing of the american put under Lévy processes. Int. J. Theor. Appl. Finance 7(03), 303–335 (2004)

    MathSciNet  MATH  Google Scholar 

  32. Levendorskiĭ, S., Xie, J.: Fast pricing and calculation of sensitivities of out-of-the-money European options under Lévy processes. J. Comput. Finance 15(3), 71–133 (2011)

    Google Scholar 

  33. Levendorskiĭ, S.Z., Boyarchenko, S.I.: On rational pricing of derivative securities for a family of non-Gaussian processes. Working paper, Institut für Mathematik (2008)

  34. Lewis, A.: Option Valuation Under Stochastic Volatility: With Mathematica Code. Finance Press, Newport Beach, California (2000)

    MATH  Google Scholar 

  35. Lewis, A.L.: A simple option formula for general jump-diffusion and other exponential Lévy processes. Available at SSRN 282110 (revised and reprinted as Ch. 14 in Option Valuation under Stochastic Volatility II, A. L. Lewis. Finance Press, Newport Beach, California, 2016) (2001)

  36. Lipton, A.: Mathematical Methods for Foreign Exchange: A Financial Engineer’s Approach. World Scientific Publishing Company, Singapore (2001)

    MATH  Google Scholar 

  37. Lipton, A.: Masterclass with Deutsche Bank. The vol smile problem. Risk 15(2), 61–66 (2002)

    Google Scholar 

  38. Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes. SIAM J. Sci. Comput. 30(4), 1678–1705 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Madan, D.B., Carr, P.P., Chang, E.C.: The variance gamma process and option pricing. Rev. Finance 2(1), 79–105 (1998)

    MATH  Google Scholar 

  40. Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4, 141–183 (1973)

    MathSciNet  MATH  Google Scholar 

  41. Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3(1–2), 125–144 (1976)

    MATH  Google Scholar 

  42. Naik, V., Lee, M.: General equilibrium pricing of options on the market portfolio with discontinuous returns. Rev. Financ. Stu. 3(4), 493–521 (1990)

    Google Scholar 

  43. Raible, S.: Lévy processes in finance: theory, numerics, and empirical facts. Ph.D. thesis, Universität Freiburg im Breisgau (2000)

  44. Samuelson, P.A.: Rational theory of warrant pricing. Ind. Manag. Rev. 6(2), 13–39 (1965)

    Google Scholar 

  45. Sato, K.I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  46. Schmelzle, M.: Option pricing formulae using Fourier transform: theory and application. Working paper, Universität Regensburg (2010)

  47. Scott, L.O.: Option pricing when the variance changes randomly: theory, estimation, and an application. J. Financ. Quant. Anal. 22(4), 419–438 (1987)

    Google Scholar 

  48. Sprenkle, C.M.: Warrant prices as indicators of expectations and preferences. Yale Econ. Essays 1(2), 178–231 (1961)

    Google Scholar 

  49. Stein, E.M., Stein, J.C.: Stock price distributions with stochastic volatility: an analytic approach. Rev. Financ. Stu. 4(4), 727–752 (1991)

    MATH  Google Scholar 

  50. Titchmarsh, E.C., et al.: Introduction to the Theory of Fourier Integrals, vol. 2. Clarendon Press, Oxford (1948)

    Google Scholar 

  51. Wu, L.: Modeling financial security returns usingLévy processes. In: Birge, J.R., Linetsky, V. (eds.) Financial Engineering, Handbooks in Operations Research and Management Science, vol. 15, pp. 117–162. Elsevier, Amsterdam (2007)

    Google Scholar 

Download references

Acknowledgements

We would like to express our special thanks to the referees for their very valuable and constructive suggestions during the publication process of our paper. We are grateful for their careful guidance and critiques which helped us improve the content significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Fuat Beyazit.

Additional information

Communicated by Anton Abdulbasah Kamil.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

A MATLAB code for variance gamma call option:

figure a

Appendix B

The characteristic function of the double exponential pure-jump process can be written as

$$\begin{aligned} {\phi }_t\left( z\right) =\exp \left( \lambda t\int Q_{\ln V}(\hbox {d}y)(\hbox {e}^{izy}-1)\right) \end{aligned}$$

where \(Q_{\ln V}(\hbox {d}y)\) is the Lévy measure of the process and y is an (double) exponential variable with means \(1/\eta _1\) (positive part) and \(1/\eta _2\) (negative part).

Applying the integral for \(y>0\) and \(y<0\) parts separately

$$\begin{aligned} {\phi }_t\left( z\right) =\exp \left( \lambda t\left[ p\int ^{\infty }_0{\left( \hbox {e}^{izy}-1\right) {\eta }_1}\hbox {e}^{-{\eta }_1y}\hbox {d}y+q\int ^0_{-\infty }{\left( \hbox {e}^{izy}-1\right) {\eta }_2}\hbox {e}^{{\eta }_2y}\hbox {d}y\right] \right) \end{aligned}$$

and taking the integrals, we obtain

$$\begin{aligned}&\exp \left( \lambda t\left[ -p{\eta }_1\left( \frac{1}{iz-{\eta }_1}+\frac{1}{{\eta }_1}\right) +q{\eta }_2\left( \frac{1}{iz+{\eta }_2}-\frac{1}{{\eta }_2}\right) \right] \right) \\&\quad =\exp \left( \lambda t\left[ \frac{-piz}{iz-{\eta }_1}+\frac{-qiz}{iz+{\eta }_2}\right] \right) . \end{aligned}$$

With simple algebra, this will yield

$$\begin{aligned} {\phi }_t\left( z\right) =\exp \left( \lambda t\left[ \frac{z^2+iz(q{\eta }_1-p{\eta }_2)}{(iz+{\eta }_2)(iz-{\eta }_1)}\right] \right) . \end{aligned}$$

Recall that here \(p,q>0\) and \(p+q=1\) represent the probabilities of upward and downward jumps as in the Kou [29] model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyazit, M.F., Eroglu, K.I. Lewis Model Revisited: Option Pricing with Lévy Processes. Bull. Malays. Math. Sci. Soc. 44, 1653–1668 (2021). https://doi.org/10.1007/s40840-020-01025-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-020-01025-3

Keywords

Mathematics Subject Classification

Navigation