Skip to main content
Log in

Wavelet Bases in Banach Function Spaces

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

We show that if the Hardy–Littlewood maximal operator is bounded on a separable Banach function space \(X({\mathbb {R}})\) and on its associate space \(X'({\mathbb {R}})\), then the space \(X({\mathbb {R}})\) has an unconditional wavelet basis. This result extends previous results by Soardi (Proc Am Math Soc 125:3669–3673, 1997) for rearrangement-invariant Banach function spaces with nontrivial Boyd indices and by Fernandes et al. (Banach Center Publ 119:157–171, 2019) for reflexive Banach function spaces. We specify our result to the case of Lorentz spaces \(L^{p,q}({\mathbb {R}},w)\), \(1<p<\infty \), \(1\le q<\infty \) with Muckenhoupt weights \(w\in A_p({\mathbb {R}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez, J., Pérez, C.: Estimates with \(A_\infty \) weights for various singular integral operators. Boll. Unione Mat. Ital. VII. Ser. A 8, 123–133 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)

    MATH  Google Scholar 

  3. Böttcher, A., Karlovich, Y.I.: Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators. Birkhäuser, Basel (1997)

    Book  Google Scholar 

  4. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Birkhäuser, Basel (2013)

    Book  Google Scholar 

  5. Cwikel, M.: The dual of weak \(L^p\). Ann. Inst. Fourier 25, 81–126 (1975)

    Article  MathSciNet  Google Scholar 

  6. Fernandes, C.A., Karlovich, A.Y., Karlovich, Y.I.: Algebra of convolution type operators with continuous data on Banach function spaces. Banach Center Publ. 119, 157–171 (2019)

    Article  Google Scholar 

  7. García-Cuerva, J., Rubio de Francia, J.: Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam (1985)

    MATH  Google Scholar 

  8. Gut, A.: Probability: A Graduate Course. Springer, Berlin (2005)

    MATH  Google Scholar 

  9. Hernández, E., Weiss, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)

    Book  Google Scholar 

  10. Izuki, M., Nakai, E., Sawano, Y.: Wavelet characterization and modular inequalities for weighted Lebesgue spaces with variable exponent. Ann. Acad. Sci. Fenn. Math. 40, 551–571 (2015)

    Article  MathSciNet  Google Scholar 

  11. Karlovich, A.Y., Lerner, A.K.: Commutators of singular integrals on generalized \(L^p\) spaces with variable exponent. Publ. Mat. 49, 111–125 (2005)

    Article  MathSciNet  Google Scholar 

  12. Karlovich, A., Shargorodsky, E.: When does the norm of a Fourier multiplier dominate its \(L^\infty \) norm? Proc. Lond. Math. Soc. 118, 901–941 (2019)

    Article  MathSciNet  Google Scholar 

  13. Karlovich, A.Y., Spitkovsky, I.M.: The Cauchy singular integral operator on weighted variable Lebesgue spaces. Oper. Theor. Adv. Appl. 236, 275–291 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Karlovich, Y.I., Loreto Hernández, J.: Wiener-Hopf operators with slowly oscillating matrix symbols on weighted Lebesgue spaces. Integr. Equ. Oper. Theory 64, 203–237 (2009)

    Article  MathSciNet  Google Scholar 

  15. Kashin, B.S., Saakyan, A.A.: Orthogonal Series, 2nd edn. Izdatel’stvo Nauchno-Issledovatel’skogo Aktuarno-Finansovogo Tsentra (AFTs), Moscow (1999). in Russian

    MATH  Google Scholar 

  16. Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-standard Function Spaces. Volume 1: Variable Exponent Lebesgue and Amalgam Spaces. Birkhäuser, Basel (2016)

    MATH  Google Scholar 

  17. Lerner, A.K.: Weighted norm inequalities for the local sharp maximal function. J. Fourier Anal. Appl. 10, 465–474 (2004)

    Article  MathSciNet  Google Scholar 

  18. Meyer, Y.: Wavelets and Operators. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  19. Meyer, Y., Coifman, R.: Wavelets: Calderón-Zygmund and Multilinear Operators. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  20. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    Article  MathSciNet  Google Scholar 

  21. Rabinovich, V.S., Samko, S.G.: Boundedness and Fredholmness of pseudodifferential operators in variable exponent spaces. Integr. Equ. Oper. Theory 60, 507–537 (2008)

    Article  MathSciNet  Google Scholar 

  22. Soardi, P.: Wavelet bases in rearrangement invariant function spaces. Proc. Am. Math. Soc. 125, 3669–3673 (1997)

    Article  MathSciNet  Google Scholar 

  23. Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Yu. Karlovich.

Additional information

Communicated by Sorina Barza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the Projects UIDB/MAT/ 00297/2020 (Centro de Matemática e Aplicações).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karlovich, A.Y. Wavelet Bases in Banach Function Spaces. Bull. Malays. Math. Sci. Soc. 44, 1669–1689 (2021). https://doi.org/10.1007/s40840-020-01024-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-020-01024-4

Keywords

Mathematics Subject Classification

Navigation