Skip to main content
Log in

Generalized Homogeneous Littlewood–Paley g-Function on Some Function Spaces

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

Let \(({{\mathcal {X}}},d,\mu )\) be a non-homogeneous metric measure space satisfying the so-called upper doubling and the geometrically doubling conditions in the sense of Hytönen. Under the assumption that the dominating function \(\lambda \) satisfies weak reverse doubling conditions, in this paper, the authors prove that the generalized homogeneous Littlewood–Paley g-function \({\dot{g}}_{r} (r\in [2,\infty ))\) is bounded from the Lipschitz spaces \({\mathrm{Lip}}_{\beta }(\mu )\) into the Lipschitz spaces \({\mathrm{Lip}}_{\beta }(\mu )\) for \(\beta \in (0,1)\), and the commutator \({\dot{g}}_{r,b}\) generated by the \(b\in {\mathrm{Lip}}_{\beta }(\mu )\) and the \({\dot{g}}_{r}\) is bounded on the Lebesgue space \(L^{p}(\mu )\) with \(p\in (1,+\infty )\). Furthermore, the boundedness of the \({\dot{g}}_{r}\) and the commutator \({\dot{g}}_{r,b}\) on generalized Morrey space \(L^{p,\phi }(\mu )\) is also obtained, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley Theory and the Study of Function Spaces. CBMS Regional Conference Series in Mathematics, vol. 79. American Mathematical Society, Washington, DC (1991)

    Book  Google Scholar 

  2. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton, NJ (1993)

    MATH  Google Scholar 

  3. Littlewood, J.E., Paley, R.E.A.C.: Theorems on Fourier series and power series (II). Proc. Lond. Math. Soc. 42, 52–89 (1937)

    Article  MathSciNet  Google Scholar 

  4. Littlewood, J.E., Paley, R.E.A.C.: Theorems on Fourier series and power series (III). Proc. Lond. Math. Soc. 43, 105–126 (1937)

    MathSciNet  MATH  Google Scholar 

  5. Zygmund, A.: Trigonometric Series, vols. I, II, 3rd edn. Cambridge University Press, Cambridge,(2002) (xii; vol I:xiv+383 pp., vol I: viii+364 pp)

  6. Stein, E.M.: On the functions of Littlewood–Paley, Lusin and Marcinkiewicz. Trans. Am. Math. Soc. 88(2), 430–466 (1958)

    Article  MathSciNet  Google Scholar 

  7. Ding, Y., Xue, Q.: Endpoint estimates for commutators of a class of Littlewood–Paley operators. Hokkaido Math. J. 36, 245–282 (2007)

    Article  MathSciNet  Google Scholar 

  8. Chen, Y., Ding, Y.: Commutators of Littlewood–Paley operators. Sci. China Math. 52(11), 2493–2505 (2009)

    Article  MathSciNet  Google Scholar 

  9. Wang, L., Tao, S.: Boundedness of Littlewood–Paley operators and their commutators on Herz–Morrey spaces with variable exponent. J. Inequal. Appl. 2014, 1–17 (2014)

    Article  MathSciNet  Google Scholar 

  10. Lerner, A.K.: On some weighted norm inequality for Littlewood–Paley operators. Ill. J. Math. 52(2), 653–666 (2008)

    Article  Google Scholar 

  11. Soria, F.: A note on a Littlewood–Paley inequality for arbitrary intervals in \(\mathbb{R}^{2}\). J. Lond. Math. Soc. 36(2), 137–142 (1987)

    Article  Google Scholar 

  12. Tolsa, X.: Littlewood–Paley theory and \(T(1)\) theorem with non-doubling. Adv. Math. 16, 57–116 (2001)

    Article  MathSciNet  Google Scholar 

  13. Yang, D., Yang, D.: Endpoint estimates for homogeneous Littlewood–Paley \(g\)-functions with non-doubling measures. J. Funct. Spaces Appl 7(2), 187–207 (2009)

    Article  MathSciNet  Google Scholar 

  14. Lin, H., Meng, Y.: Boundedness of parametrized Littlewood–Paley operators with nondoubling measures. J. Inequal. Appl. 2008, 1–25 (2008)

    Article  MathSciNet  Google Scholar 

  15. Hu, G., Yang, D., Yang, D.: \(h^{1}\), \({\rm bmo}\), \({\rm blo}\) and Littlewood-Paley \(g\)-functions with non-doubling measures. Rev. Math. Iberoam. 25(2), 595–667 (2009)

    Article  Google Scholar 

  16. Sawano, Y.: Generalized Morrey spaces for non-doubling measures. Nonlinear Dif. Equ. Appl. 15(4), 413–425 (2008)

    Article  MathSciNet  Google Scholar 

  17. Tolsa, X.: Painleve’s problem and the semiadditivity of analytic capacity. Acta Math. 190, 105–149 (2003)

    Article  MathSciNet  Google Scholar 

  18. Tolsa, X.: The semiadditivity of continuous analytic capacity and the inner boundary conjecture. Am. J. Math. 126(3), 523–567 (2004)

    Article  MathSciNet  Google Scholar 

  19. Coifman, R.R., Weiss, G.: Analyse Harmonique Non-commutative sur certain Espaces Homogènes. Lecture Notes in Mthematics, vol. 242. Springer, Berlin (1971)

    Book  Google Scholar 

  20. Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)

    Article  MathSciNet  Google Scholar 

  21. Hytönen, T.: A framework for non-homogeneous analysis on metric spaces, and \({\rm RBMO}\) space of Tolsa. Public. Mat. 54, 485–504 (2010)

    Article  MathSciNet  Google Scholar 

  22. Tan, C., Li, J.: Littlewood–Paley theory on metric spaces with non-doubling measures and its applications. Sci. China Math. 58(5), 983–1004 (2015)

    Article  MathSciNet  Google Scholar 

  23. Fu, X., Zhao, J.: Endpoint estimates of generalized homogeneous Littlewood–Paley \(g\)-functions over non-homogeneous metric measure spaces. Acta Math. Sin. 32(9), 1035–1074 (2016)

    Article  MathSciNet  Google Scholar 

  24. Hytönen, T., Yang, D., Yang, D.: The Hardy space \(H^{1}\) on non-homogeneous metric mesure spaces. Math. Proc. Cambr. Philos. Soc. 153, 9–31 (2012)

    Article  Google Scholar 

  25. Fu, X., Yang, D., Yuan, W.: Generalized fractional integral and their commutators over non-homogeneous metric measure spaces. Taiwan. J. Math 18(2), 509–557 (2014)

    Article  MathSciNet  Google Scholar 

  26. Fu, X., Yang, D., Yang, D.: The molecular characterization of the Hardy space \(H^{1}\) on non-homogeneous metric measure spaces and its application. J. Math. Anal. Appl. 410(2), 1028–1042 (2014)

    Article  MathSciNet  Google Scholar 

  27. Zhou, J., Wang, D.: Lipschitz spaces and fractional integral operators associated with nonhomogeneous metric measure spaces. Abstr. Appl. Anal. 2014, 1–8 (2014)

    MathSciNet  Google Scholar 

  28. Cao, Y., Zhou, J.: Morrey spaces for non-homogeneous metric measure spaces. Abstr. Appl. Anal. 2013, 1–8 (2013)

    Google Scholar 

  29. Lu, G., Tao, S.: Generalized Morrey spaces over non-homogeneous metric measure spaces. J. Aust. Math. Soc. 103(2), 268–278 (2017)

    Article  MathSciNet  Google Scholar 

  30. Lu, G., Tao, S.: Fractional type Marcinkiewicz commutators over non-homogene-ous metric measure spaces. Anal. Math. 45(1), 87–110 (2019)

    Article  MathSciNet  Google Scholar 

  31. Hytönen, T., Liu, S., Yang, D., Yang, D.: Boundedness of Calderón–Zygmund operators on non-homogeneous metric mesure spaces. Can. J. Math. 64, 892–923 (2012)

    Article  Google Scholar 

  32. Lu, G., Tao, S.: Commutators of Littlewood–Paley \(g^{\ast }_{\kappa }\)-functions on non-homoge-neous metric measure spaces. Open Math. 15(2), 1283–1299 (2017)

    Article  MathSciNet  Google Scholar 

  33. Chang, X.: Boundedness of the Littlewood–Paley \(g^{\ast }_{\lambda }\)-function and the area function on \({\rm Lip}_{\alpha }({\mathbb{R}}^{{\rm n}})\). Adv. Math. 25(2), 173–178 (1996)

    MathSciNet  Google Scholar 

  34. Chang, X.: The Lipschitz functions and Littlewood–Paley \(g\)-function on spaces of homogeneous type. Acta Math. Sin. 39(5), 629–636 (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guanghui Lu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Communicated by Rosihan M. Ali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported by the Doctoral Scientific Research Foundation of Northwest Normal University (No. 6014/0002020203) and the National Natural Science Foundation of China (No. 11561062).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, G., Tao, S. Generalized Homogeneous Littlewood–Paley g-Function on Some Function Spaces. Bull. Malays. Math. Sci. Soc. 44, 17–34 (2021). https://doi.org/10.1007/s40840-020-00934-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-020-00934-7

Keywords

Mathematics Subject Classification

Navigation