Skip to main content
Log in

An Entropy-Stable Residual Distribution Scheme for the System of Two-Dimensional Inviscid Shallow Water Equations

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

An entropy-stable residual distribution (RD) method is developed for the systems of two-dimensional shallow water equations (SWE). The construction of entropy stability for the residual distribution method is derived from finite volume method principles, albeit using a multidimensional approach. The paper delves into in-depth discussions on how finite volume methods achieve entropy stability in a “one-dimensional” sense for two-dimensional systems of SWE unlike the residual distribution methods. Results herein demonstrate the superiority of the entropy-stable RD methods relative to their finite volume counterparts, especially on highly irregular triangular grids. The comparative results with other established RD methods are also included, depicting similar performances with the Lax–Wendroff method for unsteady smooth flows but more accurate than the multidimensional upwind approaches (N, LDA) on both smooth and discontinuous test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abgrall, R.: Residual distribution schemes: current status and future trends. Comput. Fluids 35(7), 641–669 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abgrall, R.: A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes. J. Comput. Phys. 372, 640–666 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abgrall, R., Mezine, M.: Construction of second order accurate monotone and stable residual distribution schemes for unsteady flow. J. Comput. Phys. 188(1), 16–55 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abgrall, R., Roe, P.: High-order fluctuation schemes on triangular meshes. J. Sci. Comput. 19(1), 3–36 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barth, T.: An introduction to recent developments in theory and numerics of conservation laws. In: Numerical Methods for Gas-Dynamic Systems on Unstructured Meshes (1999)

  6. Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14(5), 1252–1286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chizari, H., Ismail, F.: Accuracy variations in residual distribution and finite volume methods on triangular grids. Bull. Malays. Math. Sci. Soc. 22, 1–34 (2015)

    MATH  Google Scholar 

  8. Chizari, H., Ismail, F.: A grid-insensitive LDA method on triangular grids solving the system of Euler equations. J. Sci. Comput. 71(2), 839–874 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chizari, H., Singh, V., Ismail, F.: Developments of entropy-stable residual distribution methods for conservation laws II: system of Euler equations. J. Comput. Phys. 330, 1093–1115 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Csík, A., Ricchiuto, M., Deconinck, H.: A conservative formulation of the multidimensional upwind residual distribution schemes for general nonlinear conservation laws. J. Comput. Phys. 179(1), 286–312 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deconinck, H., Sermeus, K., Abgrall, R.: Status of multidimensional upwind residual distribution schemes and applications in aeronautics. In: Fluids Conference, 20002328. AIAA Conference (2000)

  12. Dobeš, J., Deconinck, H.: Second order blended multidimensional upwind residual distribution scheme for steady and unsteady computations. J. Comput. Appl. Math. 215(2), 378–389 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dubey, R., Biswas, B.: Suitable diffusion for constructing non-oscillatory entropy stable schemes. J. Comput. Phys. 372, 912–930 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fischer, T., Carpenter, M.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252(1), 518–557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fjordholm, U., Mishra, S., Tadmor, E.: Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230(14), 5587–5609 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fjordholm, U., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Garcia-Navarro, P., Hubbard, M.E., Priestly, A.: Genuinely multidimensional for the 2d shallow water equations. J. Comput. Phys. 121(1), 79–93 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gassner, G., Winters, A., Kopriva, D.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272, 291–308 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Guzik, S., Groth, C.: Comparison of solution accuracy of multidimensional residual distribution and Godunov-type finite-volume methods. Int. J. Comput. Fluid Dyn. 22, 61–83 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hubbard, M., Baines, M.: Conservative multidimensional upwinding for the steady two dimensional shallow water equations. J. Comput. Phys. 138, 419–448 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hughes, T., Franca, L., Mallet, M.: A new finite element formulation for compressible fluid dynamics: I. Symmetric forms of the compressible Euler and Navier Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 54, 223–234 (1986)

    Article  MATH  Google Scholar 

  22. Ismail, F.: Toward a reliable prediction of shocks in hypersonic flow: resolving carbuncles with entropy and vorticity control. Ph.D. thesis, The University of Michigan (2006)

  23. Ismail, F., Chang, W.S., Chizari, H.: On flux-difference residual distribution methods. Bull. Malays. Math. Sci. Soc. 41(3), 1629–1655 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ismail, F., Chizari, H.: Developments of entropy-stable residual distribution methods for conservation laws I: Scalar problems. J. Comput. Phys. 330, 1093–1115 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Merriam, M.: An entropy based approach to nonlinear stability. NASA TM-101086, Ames Research Center (1989)

  27. Ricchiuto, M.: Contributions to the development of residual discretizations for hyperbolic conservation laws with application to shallow water flows. HDR thesis (2011)

  28. Ricchiuto, M., Abgrall, R., Deconinck, H.: Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes. J. Comput. Phys. 222(1), 287–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ricchiuto, M., Bollermann, A.: Stabilized residual distribution for shallow water simulations. J. Comput. Phys. 228(4), 1071–1115 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sermeus, K., Deconinck, H.: An entropy fix for multi-dimensional upwind residual distribution schemes. Comput. Fluids 34, 617–640 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Singh, V., Chizari, H., Ismail, F.: Non-unified compact residual-distribution methods for scalar advection–diffusion problems. J. Sci. Comput. 76(3), 1521–1546 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tadmor, E.: Skew-self adjoint form for systems of conservation laws. J. Math. Anal. Appl. 103(2), 428–442 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tadmor, E.: Entropy functions for symmetric systems of conservation laws. J. Math. Anal. Appl. 122(2), 355–359 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. Math. Comput. 49(179), 91–103 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. van der Weide, E.: Compressible flow simulation on unstructured grids using multidimensional upwind schemes. Ph.D. thesis, Delft University of Technology (1998)

Download references

Acknowledgements

We would like to thank Universiti Sains Malaysia for financially supporting this research work under the Academic Staff Training Scheme (ASTS) and the USM Research University Grant (No: 1001/PAERO/8014091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ismail.

Additional information

Communicated by Ahmad Izani Md. Ismail.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Median-Dual Area of FV Method

To account for highly skewed cells which constitutes of obtuse triangles, Voronoi cells are replaced by median-dual cells in this study of the effect of grid randomization. By joining the centroids to the midpoints of the edges to form the boundary, median-dual cells are well defined in any triangulation as shown in Fig. 15a (cf. Fig. 1a).

Each edge in the Voronoi cells that separates the two adjacent points are further split into two shorter edges in the median-dual cells, e.g. edge i is split into its component in cell I and cell VI. Consequently, the flux between nodes 0 and 1 is split into \(\mathbf {{\varvec{f}}}_{i,I}\) and \(\mathbf {{\varvec{f}}}_{i,VI}\) with their respective normals, \({\hat{n}}_{i,I}\) and \({\hat{n}}_{i,VI}\), as demonstrated in Fig. 15b (cf. Fig. 1b). While having more edges with different normals, the fluxes are still computed as functions from variables from only the two adjacent nodes. In another words, the underlying lack of multidimensional property of FV method remains even median-dual cells are used.

Fig. 15
figure 15

The first-order finite volume cell vertex diagram

Entropy-Stable FV Formulation

Following the work of [22] on Euler, the entropy-stable FV for SWE can be derived in a similar approach. The FV formulation starts with the semi-discretized SWE on arbitrary grids in 2D, and it is in the form of Eq. (12). With the definition of the length of a particular edge as \(l_e=\sqrt{(\Delta x)^2_e+(\Delta y)^2_e}\) as illustrated in Fig. 16, the normal and tangential velocities at e are given by

$$\begin{aligned} q_e&=\frac{u\Delta y-v\Delta x}{l_e} \end{aligned}$$
(44)
$$\begin{aligned} r_e&=\frac{u\Delta x+v\Delta y}{l_e}. \end{aligned}$$
(45)
Fig. 16
figure 16

A sample median-dual edge with normal and tangential velocities (qr) in an arbitrary grid

Substituting the new definitions into Eq. (12), the normal flux through the edge will be

$$\begin{aligned} {\varvec{f}}_e n_{e,x} + {\varvec{g}}_e n_{e,y} = \left[ \begin{array}{c} h q\\ h u q + \frac{g h^2}{2}\frac{\Delta y}{l_e}\\ h v q - \frac{g h^2}{2}\frac{\Delta x}{l_e} \end{array} \right] l_e = \mathbf {{\varvec{F}}}_e l_e, \end{aligned}$$
(46)

We consider the two neighbouring points’ variables separated by the common median-dual edge to be subscripted by L and R. The net flux across edge e is the summation of the symmetric entropy conserving flux, \({\varvec{F}}_C\), and an entropy-stable (or consistent) dissipative flux, which is given by

$$\begin{aligned} \mathbf {{\varvec{F}}_e} ({\varvec{u}}_L,{\varvec{u}}_R) = {\varvec{F}}_C ({\varvec{u}}_L,{\varvec{u}}_R) - \frac{1}{2}\hat{{\varvec{R}}}|\hat{\varvec{\varLambda }}\hat{{\varvec{S}}}|\hat{{\varvec{R}}}^{{\varvec{T}}} [{\varvec{v}}]. \end{aligned}$$
(47)

The entropy conservative flux is computed with arithmetic averaged quantities from the neighbouring two points, and it is defined as

$$\begin{aligned} {\varvec{F}}_C ({\varvec{u}}_L,{\varvec{u}}_R) = \left[ \begin{array}{c} {\hat{h}} {\hat{q}}\\ {\hat{h}} {\hat{u}} {\hat{q}} + \frac{g {\hat{h}}^2}{2}\frac{\Delta y}{l_e}\\ {\hat{h}} {\hat{v}} {\hat{q}} - \frac{g {\hat{h}}^2}{2}\frac{\Delta x}{l_e} \end{array} \right] \end{aligned}$$
(48)

where \({\hat{a}}=\frac{1}{2}\left( a_L + a_R \right) \). It should be noted that the right eigenvectors, \(\hat{{\varvec{R}}}\), the eigenvalues, \(\hat{\varvec{\varLambda }}\), and the scaling matrix, \(\hat{{\varvec{S}}}\), in the dissipative flux are of similar forms as Eqs. (25), (26), (27), respectively. However, the components of these matrices in Eq. (47) are also arithmetic averaged values of the two points. Besides, the streamline direction \(\theta \) is replaced by the edge outward normal, \(\hat{n_e}\). \([{\varvec{v}}]\) is defined as the change of the entropy variables between the left and right points, \([{\varvec{v}}]={\varvec{v}}_R-{\varvec{v}}_L\).

Edge-Based Fluxes

Consider any system of hyperbolic equations as given in Eq. (1) with the fluxes in the x-direction given as \({\varvec{f}}\). We intend to determine the difference between the flux over the element \({\varvec{f}}^*\) and the arithmetic average flux over the edge of the particular element \({\varvec{f}}^{*}_{ij},{\varvec{f}}^{*}_{jk},{\varvec{f}}^{*}_{ki}\) as shown in Fig. 4. Assume that this particular element has \({\varvec{f}}^*\) located at (0, 0). Thus, the centre of the triangle is at the (0, 0) or,

$$\begin{aligned} x_i+x_j+x_k=0,\qquad y_i+y_j+y_k=0 \end{aligned}$$
(49)

and the coordinates are,

$$\begin{aligned} i:(x_ih,y_ih),\quad j:(x_jh,y_jh),\quad k:(x_kh,y_kh) \end{aligned}$$
(50)

The three entropy-conserved fluxes can be calculated for each edge

$$\begin{aligned} {\varvec{f}}^*_{ij},\quad {\varvec{f}}^*_{jk},\quad {\varvec{f}}^*_{ki} \end{aligned}$$
(51)

as given in Eq. (18). Using Taylor analysis, we can estimate the error as

$$\begin{aligned} \begin{array}{rl} \text {Error}=&{}\displaystyle {\varvec{f}}^*- \frac{{\varvec{f}}^*_{ij}+{\varvec{f}}^*_{jk}+{\varvec{f}}^*_{ki}}{3} \\ =&{}\displaystyle \frac{h^2}{3}\left( -\frac{\partial ^2{\varvec{f}}^*}{\partial x^2}\left( x_i^2+x_ix_j+x_j^2\right) \right. \\ &{}\displaystyle -\frac{\partial ^2{\varvec{f}}^*}{\partial x\partial y} \left( -x_i (2 y_i + y_j) - x_j (y_i + 2 y_j)\right) \\ &{}\displaystyle \left. -\frac{\partial ^2{\varvec{f}}^*}{\partial y^2} \left( y_i^2+y_iy_j+y_j^2\right) \right) +O\left( h^3\right) \end{array} \end{aligned}$$
(52)

which demonstrates error of \(O(h^2)\).

Classic RD Schemes

In the context of RD methods, there are various approaches to distribute the total residual or signals to each node of the element. Considering system of conservation laws in Eq. (1), the upwind parameter for a certain node i in an element is introduced as

$$\begin{aligned} {\varvec{k}}_i=\frac{1}{2}\left( \overrightarrow{{\varvec{R}}}\overrightarrow{\varvec{\varLambda }}\overrightarrow{{\varvec{R}}}^{-1}\right) \cdot \overrightarrow{n}_i, \end{aligned}$$
(53)

where \(\overrightarrow{n}_i\) is the inward normal of the edge opposite of node i scaled with the respective edge. To differentiate the fluxes flowing in or out of the cell, define

$$\begin{aligned} {\varvec{k}}_i^+=\left\{ \begin{array}{lc} {\varvec{k}}_i&{}\quad \left( \overrightarrow{{\varvec{R}}}\overrightarrow{\varvec{\varLambda }}\overrightarrow{{\varvec{R}}}^{-1}\right) \cdot \overrightarrow{n}_i\ge 0 \\ 0&{}\quad \left( \overrightarrow{{\varvec{R}}}\overrightarrow{\varvec{\varLambda }}\overrightarrow{{\varvec{R}}}^{-1}\right) \cdot \overrightarrow{n}_i<0 \end{array} \right. ,\qquad {\varvec{k}}_i^-=\left\{ \begin{array}{lc} 0&{}\quad \left( \overrightarrow{{\varvec{R}}}\overrightarrow{\varvec{\varLambda }}\overrightarrow{{\varvec{R}}}^{-1}\right) \cdot \overrightarrow{n}_i>0 \\ {\varvec{k}}_i&{}\quad \left( \overrightarrow{{\varvec{R}}}\overrightarrow{\varvec{\varLambda }}\overrightarrow{{\varvec{R}}}^{-1}\right) \cdot \overrightarrow{n}_i\le 0 \end{array} \right. \end{aligned}$$
(54)

where \({\varvec{k}}_i^+\) represents flux flowing into the element at edge opposite of node i and on the same note, \({\varvec{k}}_i^-\) represents outflowing flux. Then nodal signal distributions for the classic RD schemes are defined as the following.

  • Narrow (N) scheme

    $$\begin{aligned} \varvec{\phi }_i^\text {N}={\varvec{k}}_i^+\left( {\varvec{u}}_i-\hat{{\varvec{u}}}\right) ,\quad \hat{{\varvec{u}}}=\left( \sum {\varvec{k}}_i^-\right) ^{-1}\left( \sum {\varvec{k}}_i^-{\varvec{u}}_i\right) \end{aligned}$$
    (55)
  • Lax–Friedrichs (LxF) scheme

    $$\begin{aligned} \varvec{\phi }_i^{\mathrm{LxF}}=\bar{\varvec{\phi }}_T+{\varvec{a}}({\varvec{u}}_i-\bar{{\varvec{u}}}),\quad {\varvec{a}}\ge \max (|{\varvec{k}}_i|,|{\varvec{k}}_j|,|{\varvec{k}}_k|) \end{aligned}$$
    (56)

    where \(\bar{{\varvec{u}}}\) and \(\bar{\varvec{\phi }}_T\) are the arithmetic average of \({\varvec{u}}\) and \(\varvec{\phi }_T\) over the element.

  • Low diffusion advection (LDA) scheme

    $$\begin{aligned} \varvec{\phi }_i^\text {LDA}=\varvec{\zeta }_i^{LDA}\varvec{\phi }_T,\quad \varvec{\zeta }_i^\text {LDA}={\varvec{k}}_i^+\left( \sum {\varvec{k}}_i^+\right) ^{-1} \end{aligned}$$
    (57)
  • Lax–Wendroff (LxW) scheme

    $$\begin{aligned} \varvec{\phi }_i^{\mathrm{LxW}}=\varvec{\zeta }_i\varvec{\phi }_T,\quad \varvec{\zeta }_i=\frac{1}{3}+\frac{\Delta t}{2A_i}{\varvec{k}}_i,\quad \Delta t=\left( \frac{2A_i}{\sum _p|{\varvec{k}}_p|}\right) \nu . \end{aligned}$$
    (58)

    where \(A_i\) is the median-dual area of node i and \(\nu \) is the CFL number.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, W.S., Ismail, F. & Chizari, H. An Entropy-Stable Residual Distribution Scheme for the System of Two-Dimensional Inviscid Shallow Water Equations. Bull. Malays. Math. Sci. Soc. 42, 1745–1771 (2019). https://doi.org/10.1007/s40840-019-00719-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-019-00719-7

Keywords

Mathematics Subject Classification

Navigation