Skip to main content
Log in

Differential Equations and Inclusions of Fractional Order with Impulse Effects in Banach Spaces

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

The present paper is concerned with the existence of solutions, in infinite- dimensional Banach spaces, for impulsive differential inclusions and equations of order \(q\in (1,2)\), with anti-periodic conditions and involving the Caputo derivative whether in the generalized sense (via the Riemann–Liouville fractional derivative,) or in the normal sense and whether the lower limit on each impulsive subinterval \( (t_{i} ,t_{i+1}],\, i=0,1,\ldots ,m\) is keep at zero or is set at \(t_{i}\). Using the technique of fixed point and the properties of the measure of noncompactness, existence results are obtained. Moreover, we derive in reflexive Banach spaces, by using a new version weakly convergent criteria in the space of piecewise continuous functions, an existence result of solutions without assuming any condition on the multivalued function in terms of measure of noncompactness. Some examples will be given to illustrate the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P., Hristova, S., O’Regan, D.: Aurvey of Lyapunov functions, stability and impulsive Caputo fractional differential equations. Fract. Calc. Appl. Anal. 19(2), 290–318 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Agarwal, R.P., Ahmed, B.: Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions. Comput. Math. Appl. 62, 1200–1214 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Agarwal, R.P., Benchohra, M., Hamani, S.: Survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973–1033 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Agarwal, P., Choi, J.: Certain fractional integral inequalities associated with pathway fractional integral operators. Bull. Korean Math. Soc. 53(1), 181–193 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Agarwal, P., Choi, J.: Fractional calculus operators and their image formulas. J. Korean Math. Soc. 53(5), 1183–1210 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Ahmad, B., Nieto, J.J.: Existence of solutions for impulsive anti-periodic boundary value problems of fractional order. Taiwan. J. Math. 15(3), 981–993 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Ahmed, B.: Existence of solutions for fractional differential equations of order \(q\in (2,3]\) with anti-periodic boundary conditions. J. Appl. Math. Comput. 34(1–2), 385–391 (2010)

    MathSciNet  Google Scholar 

  8. Alsaedi, A., Ahmed, B., Assolami, A.: On anti-periodic boundary value problems of higher-order fractional differential equations. Abstr. Appl. Anal. 2012 Article ID 325984,15 pages(2012)

  9. Agur, Z., Cojocaru, L., Mazaur, G., Anderson, R.M., Danon, Y.L.: Pulse mass measles vaccination across age shorts. Proc. Natl. Acad. Sci. USA 90, 11698–11702 (1993)

    Google Scholar 

  10. Aubin, J.P., Frankoeska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    Google Scholar 

  11. Bajlekova, E.G.: Fractional Evolution Equations in Banach Spaces. Eindhoven University of Technology, Eindhoven (2001)

    MATH  Google Scholar 

  12. Belov, S.A., Chistyakov, V.V.: A selection principle for mappings of bounded variation. J. Math. Anal. Appl. 249, 351–366 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Benchohra, M., Henderson, J., Seba, D.: Boundary value problems for fractional differential inclusions in Banach spaces. Fract. Differ. Calc. 2(1), 99–108 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Carporation, New York (2006)

    MATH  Google Scholar 

  15. Ben Makhlouf, A., Hammami, M.A., Sioud, K.: Stability of fractional order nonlinear system depending on a parameter. Bull. Korean Math. Soc. 54(4), 1309–1321 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Bochner, S., Taylor, A.E.: Linear functionals on certain spaces of abstractly valued functions. Ann. Math. 39, 913–944 (1938)

    MathSciNet  MATH  Google Scholar 

  17. Bothe, D.: Multivalued perturbation of m-accerative differential inclusions. Israel J. Math. 108, 109–138 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Cardinali, T., Rubbioni, P.: Impulsive mild solution for semilinear differential inclusions with nonlocal conditions in Banach spaces. Nonlinear Anal. 75, 871–879 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Cernea, A.: On the existence of solutions for fractional differential inclusions with anti-periodic boundary conditions. J. Appl. Math. Comput. 38, 133–143 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Chen, Y., Nieto, J.J., O’Regan, D.: Anti-periodic solutions for fully nonlinear first-order differential equations. Math. Comput. Model. 46, 1183–1190 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Dunford, N., Schwartz, J.H.: Linear Operators. Wiley, New York (1976)

    MATH  Google Scholar 

  22. Fečkan, M., Zhou, Y., Wang, J.R.: On the concept and existence of solutions for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3050–3060 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Henderson, J., Ouahab, A.: Impulsive differential inclusions with fractional order. Comput. Math. Appl. 59, 1191–1226 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Ibrahim, A.G.: Fractional differential inclusions with anti-periodic boundary conditions in Banach spaces. Electron. J. Qual. Theory Differ. Equ. 2014(67), 1–32 (2014)

    MathSciNet  Google Scholar 

  25. Kamenskii, M., Obukhowskii, V., Zecca, V.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. De Gruyter Saur. Nonlinear Anal. Appl., vol. 7. Walter, Berlin (2001)

    MATH  Google Scholar 

  26. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. North-Holland Mathematics Studies, Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  27. Kim, K.H., Lim, S.: Asymptotic behaviors of fundemental solutions and its derivatives to fractional diffusion wave equations. J. Korean Math. Soc. 53(4), 929–967 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Lan, Q.A., Lin, W.: Positive solutions of systems of Caputo fractional differential equations. Commun. Appl. Anal. 17(1), 61–86 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Liu, Z., Zeng, B.: Existence and controllability for fractional evolution inclusions of Clarke’s subdifferential type. Appl. Math. Comput. 257, 178–189 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Luo, Z., Shen, J., Nieto, J.J.: Anti-periodic boundary value problem for first-order impulsive ordinary differential equations. Comput. Math. Appl. 49, 253–261 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Mahmudov, N.I., Unul, S.: Existence of solutions of order fractional three-point boundary value problem with integral boundary conditions. Abstract Appl. Anal. 2014 ID198632 (2014)

  32. Nakao, M.: Existence of an anti-periodic solution for the quasilinear wave equation with viscosity. J. Math. Anal. Appl. 204, 754–764 (1996)

    MathSciNet  MATH  Google Scholar 

  33. O’Regan, D.: Fixed point theorems for weakly sequentially closed maps. Arch. Math. 36, 61–70 (2000)

    MathSciNet  MATH  Google Scholar 

  34. Ouahab, A.: Some results for fractional boundary value problem of differential inclusions. Nonlinear Anal. TMA 69, 3877–3896 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Rida, S.Z., El-Sherbiny, H.M., Arafa, A.A.M.: On the solution of the fractional nonlinear Schrődinger equation. Phys. Lett. A. 372, 553–558 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Shao, J.: Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays. Phys. Lett. A. 372, 5011–5016 (2008)

    MATH  Google Scholar 

  37. Shu, X.B., Lai, Y., Chen, Y.: The existence of mild solutions for impulsive fractional partial differential equations. Nonlinear Anal. TMA 74, 2003–2011 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Shu, X.B., Shi, Y.: A study on the mild solution of impulsive fractional evolution equations. Appl. Math. Comput. 273, 465–467 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Shu, X.B., Wang, Q.: The existence of mild solutions for fractional differential equations with nonlocal conditions of order\(1<\alpha <2\). Comput. Math. Appl. 64, 2100–2110 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Wang, X.: Impulsive boundary value problem for nonlinear differential equations of fractional order. Comput. Math. Appl. 62, 2383–2391 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Wang, J.R., Ibrahim, A.G., Fečkan, M.: Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces. Appl. Math. Comput. 257, 103–118 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Wang, J.R., Fečkan, M., zhou, Y.: A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 194, 806–831 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Wang, J.R., Zhou, Y., Fečkan, M.: On recent development in the theory of boundary value problems fractional differential equations. Comput. Math. Appl. 64, 3008–3020 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Wang, J.R., Zhou, Y., Fečkan, M.: Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions. Bull. Sci. math. 141, 727–746 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Wang, J.R., Ibrahim, A.G., Fečkan, M.: Anti-periodic solutions for differential inclusions of arbitrary fractional order in Banach spaces and involving the generalized Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 34, 1–22 (2016)

    Google Scholar 

  46. Wang, J.R., Ibrahim, A.G., O’Regan, D.: Controllability of fractional evolution inclusions with noninstantaneous impulses. Int. J. Nonlinear Sci. Numer. Simul. (2017). https://doi.org/10.1515/IJNSNS-2017-0090

    Article  MATH  Google Scholar 

  47. Wang, J.R., Zhou, Y.: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. Real World Appl. 12, 3642–3653 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Zavalishchin, S.T., Sesekin, A.N.: Dynamic Impulse Systems, Theory and Applications. Kluwer Academic Publishers Group, Dordrecht (1997)

    MATH  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the Deanship of Scientific Research, King Faisal University of Saudi Arabia, for their financial support this research under Grant No. 170060. Also, we would like to thank the referee for their valuable and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Gamal Ibrahim.

Additional information

Shangjiang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A.G. Differential Equations and Inclusions of Fractional Order with Impulse Effects in Banach Spaces. Bull. Malays. Math. Sci. Soc. 43, 69–109 (2020). https://doi.org/10.1007/s40840-018-0665-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-018-0665-2

Keywords

Mathematics Subject Classification

Navigation