Skip to main content
Log in

Estimates Based on Sequential Order Statistics with the Two-Parameter Pareto Distribution

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

This paper deals with the concept of sequential order statistics (SOS) for modeling the sequential r-out-of-n: F systems under a conditional proportional hazard rates drawn from a two-parameter Pareto distribution. Maximum likelihood estimates of parameters of interest are investigated based on multiple SOSs. Proposing various priors for the parameters of the assumed model, the Bayes estimates of the parameters of interest are derived and admissibility of obtained estimators is investigated. Due to the lack of explicit expressions for some of the obtained Bayes estimates, Lindley’s approximations are derived. To assess the performance of the obtained estimators, we conducted extensive simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aban, I.B., Meerschaert, M.M., Panorska, A.K.: Parameter estimation for the truncated pareto distribution. J. Am. Stat. Assoc. 101(473), 270–277 (2006)

    Article  MathSciNet  Google Scholar 

  2. Abdel-Aty, Y., Franz, J., Mahmoud, M.A.W.: Bayesian prediction based on generalized order statistics using multiply type-II censoring. Statistics 41(6), 495–504 (2007)

    Article  MathSciNet  Google Scholar 

  3. Aki, S., Hirano, K.: Lifetime distribution and estimation problems of consecutive-k-out-of-n: F systems. Ann. Inst. Stat. Math. 48(1), 185–199 (1996)

    Article  MathSciNet  Google Scholar 

  4. Ali, M.A.M.: Mousa. Inference and prediction for pareto progressively censored data. J. Stat. Comput. Simul. 71, 163–181 (2001)

    Article  Google Scholar 

  5. Arnold, B.C., Press, S.J.: Bayesian inference for pareto populations. J. Econom. 21, 287–306 (1983)

    Article  MathSciNet  Google Scholar 

  6. Arnold, B.C., Press, S.J.: Bayesian estimation and prediction for pareto data. J. Am. Stat. Assoc. 84, 1079–1084 (1989)

    Article  MathSciNet  Google Scholar 

  7. Balakrishnan, N., Cramer, E., Kamps, U., Schenk, N.: Progressive type II censored order statistics from exponential distributions statistics. Statistics 35, 537–556 (2001)

    Article  MathSciNet  Google Scholar 

  8. Balakrishnan, N., Nevzorov, V.B.: A Primer on Statistical Distributions. Wiley, Hoboken (2003)

    Book  Google Scholar 

  9. Bedbur, S.: Umpu tests based on sequential order statistics. J. Stat. Plan. Inference 140, 2520–2530 (2010)

    Article  MathSciNet  Google Scholar 

  10. Berger, J.M., Mandelbrot, B.: A new model for error clustering in telephone circuits. IBM J. 7, 224–236 (1963)

    Article  Google Scholar 

  11. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis, 2ed edn. Springer, New York (1985)

    Book  Google Scholar 

  12. Beutner, E., Kamps, U.: Order restricted statistical inference for scale parameters based on sequential order statistics. J. Stat. Plan. Inference 139, 2963–2969 (2009)

    Article  MathSciNet  Google Scholar 

  13. Cramer, E., Kamps, U.: Sequential order statistics and k-out-of-n systems with sequentially adjusted failure rates. Ann. Inst. Stat. Math. 48(3), 535–549 (1996)

    Article  MathSciNet  Google Scholar 

  14. Cramer, E., Kamps, U.: Estimation with sequential order statistics from exponential distributions. Ann. Inst. Stat. Math. 53, 307–324 (2001)

    Article  MathSciNet  Google Scholar 

  15. Cramer, E., Kamps, U.: Sequential k-out-of-n systems. In: Balakrishnan, N., Rao, C.R. (eds.) Handbook of Statistics: Advances in Reliability, pp. 301–372. Elsevier, Amsterdam (2003). Chap. 12

    Google Scholar 

  16. Cramer, E., Kamps, U.: Marginal distributions of sequential and generalized order statistics. Metrika 58, 293–310 (2003)

    Article  MathSciNet  Google Scholar 

  17. Doostparast, M., Akbari, M.G., Balakrishnan, N.: Bayesian analysis for the two-parameter pareto distribution based on record values and times. J. Stat. Comput. Simul. 81(11), 1393–1403 (2011)

    Article  MathSciNet  Google Scholar 

  18. Dyer, D.: Structural probability bounds for the strong pareto law (dyer). Canadian Journal of Statistics 9, 71–77 (1981)

    Article  MathSciNet  Google Scholar 

  19. Fernandez, A.J.: Bayesian estimation based on trimmed samples from pareto populations. Comput. Stat. Data Anal. 51, 1119–1130 (2006)

    Article  MathSciNet  Google Scholar 

  20. Harris, C.M.: The pareto distribution as a queue service discipline. Oper. Res. 16(2), 307–313 (1968)

    Article  Google Scholar 

  21. Howlader, H.A., Hossain, A.M.: Bayesian survival estimation of pareto distribution of the second kind based on failure-censored data. Comput. Stat. Data Anal. 38, 301–314 (2002)

    Article  MathSciNet  Google Scholar 

  22. Kamps, U.: A concept of generalized order statistics. J. Stat. Plan. Inference 48, 1–23 (1995)

    Article  MathSciNet  Google Scholar 

  23. Lindley, D.V.: Approximate bayesian methods. Trab. Estad. 31, 223–337 (1980)

    Article  MathSciNet  Google Scholar 

  24. Madi, M.T., Raqab, M.Z.: Bayesian prediction of temperature records using the pareto model. Environmetrics 15, 701–710 (2004)

    Article  Google Scholar 

  25. Nabe, M., Murata, M., Miyahara, H.: Analysis and modeling of world wide web trac for capacity dimensioning of internet access lines. Perform. Eval. 34, 249–271 (1998)

    Article  Google Scholar 

  26. Nigm, A.M., Hamdy, H.I.: Bayesian prediction bounds for the pareto lifetime model. Commun. Stat. 16, 1761–1772 (1987)

    Article  MathSciNet  Google Scholar 

  27. Rizzo, M.L.: New goodness-of-fit tests for pareto distributions. Astin Bull. 39(2), 691–715 (2009)

    Article  MathSciNet  Google Scholar 

  28. Royden, H.L.: Real Analysis. A Simon and Schuster Company, New York City (1988)

    MATH  Google Scholar 

  29. Rytgaard, M.: Estimation in the pareto distribution. Astin Bull. 20(2), 201–216 (1990)

    Article  Google Scholar 

  30. Schenk, N., Burkschat, M., Cramer, E., Kamps, U.: Bayesian estimation and prediction with multiply type-II censored samples of sequential order statistics from one-and two-parameter exponential distributions. J. Stat. Plan. Inference 141, 1575–1587 (2011)

    Article  MathSciNet  Google Scholar 

  31. Soliman, A.A.: Bayesian prediction in a pareto lifetime model with random sample size. Statistician 49(1), 51–62 (2000)

    Google Scholar 

  32. Wu, C., Wu, S., Chan, H.Y.: Mle and the estimated expected test time for pareto distribution under progressive censoring data. Int. J. Inf. Manag. Sci. 15(3), 29–42 (2004)

    MATH  Google Scholar 

  33. Wu, S.: Estimation for the two-parameter pareto distribution under progressive censoring with uniform removals. J. Stat. Comput. Simul. 73(2), 125–134 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to anonymous referees and the Editor in Chief for their useful suggestions and comments on an earlier version of this manuscript, which resulted in a substantial improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Doostparast.

Additional information

Communicated by Anton Abdulbasah Kamil.

Appendix

Appendix

To prove admissibility of \({\hat{\beta }}_{1,0,0}\), we show that the conditions of Theorem 13 in [11] (p. 547) hold. Notice that, following Theorem 3.1 of [13], we conclude that \(-\ln T_2 \sim \Gamma (rs, \beta )\). Let consider \(\{\pi _m; m\ge 1\} = \{\Gamma (1/m,1/m); m\ge 1\}\) be a sequence of proper priors for \(\beta \). The Bayes estimate of \(\beta \) under the SEL function is \({\hat{\beta }}_{1,1/m,1/m}=(rs+1/m)/(1/m-\ln T_2)\) which tends to \({\hat{\beta }}_{1,0,0}\) as \(m \rightarrow \infty \). The risk difference of \({\hat{\beta }}_{1,1/m,1/m}\) and \({\hat{\beta }}_{1,0,0}\) is

$$\begin{aligned} \nonumber D_{m}= & {} (rs+1/m)^2 E\left[ \left( \frac{1}{1/m-\ln T_2}\right) ^2\right] -(rs)^2 E\left[ \left( \frac{1}{-\ln T_2}\right) ^2\right] \\&\; -\,2\beta (rs+1/m)E\left[ \frac{1}{1/m-\ln T_2}\right] +2\beta rs E\left[ \frac{1}{-\ln T_2}\right] . \end{aligned}$$
(36)

Notice that \(E\left( -\ln T_2\right) ^{-1}=\beta /(rs-1)\), \(E\left( -\ln T_2\right) ^{-2}=\beta ^2/(rs-1)(rs-2)\), \(E\left( m^{-1}-\ln T_2\right) ^{-1}=\beta ^{rs}e^{\beta m^{-1}} \Phi _1(rs,1,\beta ,m^{-1})/\Gamma (rs)\) and \(E\left( m^{-1}-\ln T_2\right) ^{-2}=\beta ^{rs}e^{\beta /m} \Phi _1(rs,2,\beta ,1/m)/\Gamma (rs)\) where \(\Phi _1(n,,k,h,\eta )=\int _{\eta }^{\infty } \frac{(x-\eta )^{n-1}}{x^k}e^{-h x}\, dx\).

Substituting these values into (36) and using the monotone convergence theorem [28] at p 87, \(D_{m}\) tends to zero as \(m\rightarrow \infty \). From (36), Condition (c) of Theorem 13 in [11] (p. 547) satisfies by taking expectation w.r.t. the proper prior \(\pi _m\). The estimator \({\hat{\beta }}_{1,1/m,1/m}\) is the unique Bayes estimate under the SEL function w.r.t. the proper prior \(\pi _m\), and hence, the Bayes risk \(r({\hat{\beta }}_{1,1/m,1/m},\beta )=E^{\pi _m}[R({\hat{\beta }}_{1,1/m,1/m},\beta )]\) is finite. This implies that the Bayes risk of the estimator \({\hat{\beta }}_{1,0,0}\) is finite, and this fulfill of Condition (a) of Theorem 13 in [11] (p. 547). On the other hand, any nondegenerate convex subset \(C\subseteq \Theta =[0,\infty )\) is an interval, say [ab], then it is sufficient to show that, there exist a \(K>0\) and integer M such that, for \(m\ge M\), \(\int _a^b \pi _m(\beta ) d\beta \ge K\). Since the function \((1/m)^{1/m}\) is increasing in m for \(m\ge 4\), we have

$$\begin{aligned} \int _a^b \pi _m(\beta ) d\beta= & {} \int _a^b \frac{(1/m)^{1/m}}{\Gamma (1/m)} \beta ^{1/m-1}e^{-\beta /m} d\beta \nonumber \\\ge & {} \int _a^{b^*} \frac{(1/4)^{1/4}}{\Gamma (1/4)} \beta ^{1/m-1}e^{-\beta /4} d\beta \nonumber \\= & {} \frac{(1/4)^{1/4}}{\Gamma (1/4)}e^{-b^*/4}\int _a^{b^*} \beta ^{1/m-1}d\beta \nonumber \\= & {} A\,m\left[ (b^*)^{1/m}-a^{1/m}\right] \ge A\,m\,(b^*)^{1/m} \end{aligned}$$
(37)

where \(A=\frac{(1/4)^{1/4}}{\Gamma (1/4)}e^{-b^*/4}\), \(b^*=\min (a+1,b)\) and \(a>0\). For \(b^*<1\), it is easy to see that \(m\,(b^*)^{1/m}\) is an increasing function w.r.t. m and hence \(A\,m\,(b^*)^{1/m}\ge 4A\,(b^*)^{1/4}=K_1\). For \(b^*\ge 1\), \(A\,m\,(b^*)^{1/m}\ge 4A=K_2 \ge K_1\). Assuming \(K= K_1\), Condition (b) of Theorem 13 in [11] (p. 547).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmailian, M., Doostparast, M. Estimates Based on Sequential Order Statistics with the Two-Parameter Pareto Distribution. Bull. Malays. Math. Sci. Soc. 42, 2897–2914 (2019). https://doi.org/10.1007/s40840-018-0637-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-018-0637-6

Keywords

Navigation