Skip to main content
Log in

On the Eccentric Complexity of Graphs

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

Let G be a simple connected graph. The eccentric complexity of graph G is introduced as the number of different eccentricities of its vertices. A graph with eccentric complexity equal to one is called self-centered. In this paper, we study the eccentric complexity of graph under several graph operations such as complement of graph, line graph, Cartesian product, sum, disjunction and symmetric difference of graphs. Also, we present an infinite family of non-vertex-transitive self-centered graphs and we prove that all such graphs are 2-connected. Further, for any D and k where \(k \le \frac{D-1}{2}\), we construct an infinite family of non-vertex-transitive graphs with eccentric complexity k and diameter D. Extremal graphs with minimum or maximum total eccentricity among all graphs with given eccentric complexity are determined. We also consider a family of nanotubes and show that it is extremal with respect to the eccentric complexity among all fullerene graphs. At the end we also indicate some possible directions of further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alizadeh, Y., Andova, V., Klavžar, S., Škrekovski, R.: Wiener dimension: fundamental properties and (5,0)-nanotubical fullerenes. MATCH Commun. Math. Comput. Chem. 72, 279–294 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Alizadeh, Y., Azari, M., Došlić, T.: Computing the eccentricity-related invariants of single-defect carbon nanocones. J. Comput. Theor. Nanosci. 10, 1297–1300 (2013)

    Article  Google Scholar 

  3. Alizadeh, Y., Iranmanesh, A., Klavžar, S.: Interpolation method and topological indices: the case of fullerenes \(C_{12k+4}\). MATCH Commun. Math. Comput. Chem. 68, 303–310 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Alizadeh, Y., Klavžar, S.: Interpolation method and topological indices: 2-parametric families of graphs. MATCH Commun. Math. Comput. Chem. 69, 523–534 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Alizadeh, Y., Klavžar, S.: Complexity of topological indices: the case of connective eccentric index. MATCH Commun. Math. Comput. Chem. 76, 659–667 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Andova, V., Došlić, T., Krnc, M., Lužar, B., Škrekovski, R.: On the diameter and some related invariants of fullerene graphs. MATCH Commun. Math. Comput. Chem. 68, 109–130 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Azari, M., Iranmanesh, A.: Computing the eccentric-distance sum for graph operations. Discrete Appl. Math. 161, 2827–2840 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Behzad, M., Simpson, J.E.: Eccentric sequences and eccentric sets in graphs. Discrete Math. 16, 187–193 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buckley, F.: Self-centered graphs. Ann. N. Y. Acad. Sci. 576, 71–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Došlić, T., Graovac, A., Ori, O.: Eccentric connectivity index of hexagonal belts and chains. MATCH Commun. Math. Comput. Chem. 65, 745–752 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Došlić, T., Saheli, M.: Augmented eccentric connectivity index. Miskolc Math. Notes 12, 149–157 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Došlić, T., Saheli, M.: Eccentric connectivity index of composite graphs. Util. Math. 95, 3–22 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Eskender, B., Vumar, E.: Eccentric connectivity index and eccentric distance sum of some graph operations. Trans. Combin. 2, 103–111 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Ghorbani, M., Hosseinzadeh, M.A.: New version of Zagreb indices. Filomat 26, 93–100 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Graovac, A., Ori, O., Faghani, M., Ashrafi, A.R.: Distance properties of fullerenes. Iran. J. Math. Chem. 2, 99–107 (2011)

    MATH  Google Scholar 

  16. Hammack, R., Imrich, W., Klavžar, S.: Handbook of Product Graphs, 2nd edn. CRC Press, Boca Raton (2011)

    Book  MATH  Google Scholar 

  17. Harary, F., Robinson, R.W.: The diameter of a graph and its complement. Am. Math. Mon. 92, 211–212 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Imrich, W., Klavžar, S.: Product Graphs: Structure and Recognition. Wiley, New York (2000)

    MATH  Google Scholar 

  19. Iranmanesh, A., Alizadeh, Y.: Eccentric connectivity index of \(HAC_5C_7[p, q]\) and \(HAC_5C_6C_7[p, q]\) nanotubes. MATCH Commun. Math. Comput. Chem. 69, 175–182 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Lesniak, L.: Eccentric sequences in graphs. Period. Math. Hung. 6, 287–293 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, H., Pan, X.F.: On the Wiener index of trees with fixed diameter. MATCH Commun. Math. Comput. Chem. 60, 85–94 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Morgan, M.J., Mukwembi, S., Swart, H.C.: On the eccentric connectivity index of a graph. Discrete Math. 311, 1229–1234 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sharma, V., Goswami, R., Madan, A.K.: Eccentric connectivity index: a novel highly discriminating topological descriptor for structure-property and structure-activity studies. J. Chem. Inform. Model. 37, 273–282 (1997)

    Google Scholar 

  24. Wiener, H.: Structural determination of the paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  Google Scholar 

  25. Xu, K., Das, K.C., Liu, H.: Some extremal results on the connective eccentricity index of graphs. J. Math. Anal. Appl. 433, 803–817 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yarahmadi, Z., Moradi, S.: The center and periphery of composite graphs. Iran. J. Math. Chem. 5, 35–44 (2014)

    MATH  Google Scholar 

  27. Zhou, B., Du, Z.: On eccentric connectivity index. MATCH Commun. Math. Comput. Chem. 63, 181–198 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to three anonymous referees for their helpful comments, especially to one of them for an extremely careful reading of the manuscript and suggesting many improvements in it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kexiang Xu.

Additional information

Communicated by Sandi Klavžar.

Partial support of the Croatian Science Foundation via research projects BioAmpMode (Grant No. 8481) and LightMol (Grant No. IP-2016-06-1142) and of Croatian Ministry of Science, Education and Sports (Croatian-Chinese bilateral project “Graph-theoretical methods for nanostructures and nanomaterials”) is gratefully acknowledged by T. D. And K.X. is supported by NNSF of China (No. 11671202) and Chinese Excellent Overseas Researcher Funding in 2016 (No. 17005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, Y., Došlić, T. & Xu, K. On the Eccentric Complexity of Graphs. Bull. Malays. Math. Sci. Soc. 42, 1607–1623 (2019). https://doi.org/10.1007/s40840-017-0564-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-017-0564-y

Keywords

Mathematics Subject Classification

Navigation