Skip to main content

Advertisement

Log in

Explicit Iteration Methods for Solving Variational Inequalities in Banach Spaces

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

The problem of finding a solution of a variational inequality over the set of common fixed points of a nonexpansive semigroup is considered in a real and uniformly convex Banach space without imposing the sequential weak continuity of the normalized duality mapping. Two new explicit iterative methods are introduced based on the steepest-descent method, and conditions are given to obtain their strong convergence. A numerical example is showed to illustrate the convergence analysis of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-Type Mappings with Applications. Springer, Dordrecht (2009)

    MATH  Google Scholar 

  2. Buong, N., Duong, L.T.: An explicit iterative algorithm for a class of variational inequalities in Hilbert Spaces. J. Optim. Theory Appl. 151, 513–524 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ceng, L.-C., Ansari, Q.H., Yao, J.-C.: Mann-type steepest-descent and modified steepest-descent methods for variational inequalities in Banach spaces. Numer. Funct. Anal. Optim. 29, 987–1033 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cioranescu, I.: Geometry of Banach Spaces. Duality Mappings and Nonlinear Problems. Kluwer, Dordrecht (1990)

    Book  MATH  Google Scholar 

  5. Chen, R., Song, Y.: Convergence to common fixed point of nonexpansive semigroup. J. Comput. Appl. Math. 200, 566–575 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  7. Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of Variational Inequalities in Mechanics. Springer, Berlin (1998)

    MATH  Google Scholar 

  8. Iiduka, H.: Fixed point optimization algorithm and its application to power control in CDMA data networks. Math. Program. 133, 227–242 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Iiduka, H.: Fixed point optimization algorithm and its application to network bandwidth allocation. J. Comput. Appl. Math. 236, 1733–1742 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iiduka, H.: Fixed point optimization algorithms for distributed optimization in network systems. SIAM J. Optim. 23, 1–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  12. Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967)

    Article  MATH  Google Scholar 

  13. Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications—Convex and Nonconvex Energy Functions. Birkhäuser, Boston (1985)

    Book  MATH  Google Scholar 

  14. Stampacchia, G.: Formes bilinéaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  15. Suzuki, T.: Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces. Fixed Point Theory Appl. 2005(1), 103–123 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Thuy, N.T.T., Hieu, P.T.: Implicit iteration methods for variational inequalities in Banach spaces. Bull. Malays. Math. Sci. Soc. 36, 917–926 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Wang, S.: Convergence and weaker control conditions for hybrid iterative algorithms. Fixed Point Theory Appl. (2011). doi:10.1186/1687-1812-2011-3

    MathSciNet  MATH  Google Scholar 

  18. Xu, H.-K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yamada, I.: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, Chapter 8, pp. 473–504. Elsevier Science Publishers, Amsterdam (2001)

    Chapter  Google Scholar 

  20. Yang, P., Yao, Y., Liou, Y.C., Chen, R.: Hybrid algorithms of nonexpansive semigroups for variational inequalities. J. Appl. Math. (2012). doi:10.1155/2012/634927

  21. Yao, Y., Noor, M.A., Liou, Y.C.: A new hybrid iterative algorithm for variational inequalities. Appl. Math. Comput. 216, 822–829 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. Springer, New York (1985)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for their useful comments, which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Jacques Strodiot.

Additional information

Communicated by Poom Kumam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hieu, P.T., Thuy, N.T.T. & Strodiot, J.J. Explicit Iteration Methods for Solving Variational Inequalities in Banach Spaces. Bull. Malays. Math. Sci. Soc. 42, 467–483 (2019). https://doi.org/10.1007/s40840-017-0494-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-017-0494-8

Keywords

Mathematics Subject Classification

Navigation