Skip to main content
Log in

Univalent Harmonic and Biharmonic Mappings with Integer Coefficients in Complex Quadratic Fields

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

Let \({\mathcal S}\) denote the set of all univalent analytic functions \(f(z)=z+\sum _{n=2}^{\infty }a_n z^n\) on the unit disk \(\mathbb {D}\). In 1946, B. Friedman found that the set \(\mathcal S\) of those functions which have integer coefficients consists of only nine functions. In 1985, authors determine all functions in \({\mathcal S}\) whose coefficients are integers in complex quadratic fields. The first aim of this paper is to determine the class of univalent sense-preserving harmonic mappings \(f(z)=z+\sum _{n=2}^{\infty }a_n z^n+\sum _{n=1}^{\infty }\overline{b_n} \overline{z^n}\) with the coefficients \(a_n\), \(b_n\), \(n=2, 3, \cdots \), in a fixed complex quadratic field \(Q(\sqrt{d}i)\), where d is a positive square-free integer. Then, under the condition F is sense-preserving in \(\mathbb {D}\) and \(h'(z)\ne 0\) or F is sense-reversing in \(\mathbb {D}\) and \(g(z)\equiv 0\), we determine all univalent biharmonic mappings \(F(z)=|z|^2(h(z)+\overline{g(z)})=|z|^2(z+\sum _{n=2}^{\infty }a_n z^n+\sum _{n=1}^{\infty }\overline{b_n} \overline{z^n})\), where \(a_n, b_n\in Q(\sqrt{d}i)\), \(n=2, 3, \cdots \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulhadi, Z., Abu Muhanna, Y., Khoury, S.: On univalent solutions of the biharmonic equations. J. Inequal. Appl. 5, 469–478 (2005)

    MATH  Google Scholar 

  2. Abdulhadi, Z., Abu Muhanna, Y., Khoury, S.: On some properties of solutions of the biharmonic equation. Appl. Math. Comput. 177, 346–351 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Al-Amiri, H., Blass, J., Reade, M.O., Silverman, H.: Univalent functions whose coefficients are integers in complex quadratic fields. Houst. J. Math. 11, 11–15 (1985)

    MathSciNet  MATH  Google Scholar 

  4. Birkhoff, G., Mac Lane, S.: Algebra. Macmillan Co., NewYork (1967)

    MATH  Google Scholar 

  5. Clunie, J.G., Sheil-Small, T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A. I. 9, 3–25 (1984)

    MathSciNet  MATH  Google Scholar 

  6. Duren, P.: Univalent Functions. Springer, New York (1982)

    MATH  Google Scholar 

  7. Duren, P.: Harmonic Mappings in the Plane. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  8. Friedman, B.: Two theorems on schlicht functions. Duke Math. J. 13, 171–177 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goodman, A.W.: Univalent Functions, 1–2 edn. Mariner, Tampa (1983)

    MATH  Google Scholar 

  10. Gronwall, T. H.: Some remarks on conformal representation. Ann. of Math. 16, 72–76 (1914–1915)

  11. Happel, J., Brenner, H.: Low Reynolds Numbers Hydrodynamics. Princeton-Hall, Englewood Cliffs (1985)

    MATH  Google Scholar 

  12. Jenkins, J.A.: On univalent functions with integral coefficients. Complex Var. Theory Appl. 9, 221–226 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khuri, S.A.: Biorthogonal series solution of Stokes flow problems in sectorial regions. SIAM J. Appl. Math. 56, 19–39 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Langlois, W.E.: Slow Viscous Flow. Macmillan Company, New York (1964)

    Google Scholar 

  15. Lewy, H.: On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc. 42, 689–692 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  16. Linus, V.: Note on univalent functions. Am. Math. Mon. 62, 109–110 (1955)

    Article  MathSciNet  Google Scholar 

  17. Pommerenke, Ch.: Univalent Functions. Vandenhoeck and Ruprecht, Göttingen (1975)

    MATH  Google Scholar 

  18. Ponnusamy, S., Qiao, J.: Polynomial approximation of certain biharmonic mappings. Nonlinear Anal. 81, 149–158 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ponnusamy, S., Qiao, J.: Univalent harmonic mappings with integer or half-integer coefficients, submitted

  20. Ponnusamy, S., Qiao, J.: Univalent harmonic mappings with half-integer coefficients. J. Aust. Math. Soc. 98, 257–280 (2015)

  21. Rogosinski, W.W.: On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 48, 48–82 (1943)

    MathSciNet  MATH  Google Scholar 

  22. Royster, W.C.: Rational univalent functions. Am. Math. Mon. 63, 326–328 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shah, T.-S.: On the coefficients of schlicht functions. J. Chinese Math. Soc. (N. S.) 1, 98–107 (1951)

    MathSciNet  Google Scholar 

  24. Townes, S.B.: A theorem on schlicht functions. Proc. Am. Math. Soc. 5, 585–588 (1954)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This paper was supported by the National Natural Science Foundation of China (No. 11501159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Qiao.

Additional information

Communicated by Saminathan Ponnusamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, J. Univalent Harmonic and Biharmonic Mappings with Integer Coefficients in Complex Quadratic Fields. Bull. Malays. Math. Sci. Soc. 39, 1637–1646 (2016). https://doi.org/10.1007/s40840-016-0346-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-016-0346-y

Keywords

Mathematics Subject Classification

Navigation