Skip to main content
Log in

High-Temperature Crystallization Characteristics of CaF2-SiO2 Fluxes Geared Towards High Heat Input Submerged Arc Welding

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Crystallization behaviors of CaF2-SiO2 fluxes with varying SiO2 contents from 10 wt.% to 40 wt.% have been thoroughly investigated using single hot thermocouple technique (SHTT), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The resulting continuous cooling transformation (CCT) and time–temperature-transformation (TTT) diagrams showed that the onset crystallization temperature increased and the incubation time for crystallization decreased with increasing SiO2 content. The primary crystalline phase changed from CaO to Ca2SiO4 and then to Ca4Si2O7F2 with increasing SiO2 content. For two dominant initial crystalline phases, the growth of Ca2SiO4 crystals followed a one-dimensional pattern while that of Ca4Si2O7F2 a three-dimensional one. The effective activation energy for the whole crystalline process decreases with higher SiO2 content and the most negative value of effective activation energy for flux with 40 wt.% SiO2 indicated that Ca4Si2O7F2 phase that led to poor slag detachability should be avoided, while the CaSiO4 phase should be tuned and obtained accordingly due to the large planer disregistry towards enhanced slag detachability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Wang Z, Li Z, Zhong M, Li Z, Wang C (2023) Elucidating the effect of Al2O3/SiO2 mass ratio upon SiO2-MnO-CaF2-Al2O3-based welding fluxes: Structural analysis and thermodynamic evaluation. J Non-Cryst Solids 601:122071

    Article  CAS  Google Scholar 

  2. Wang C, Zhang J (2021) Fine-tuning weld metal compositions via flux optimization in submerged arc welding: an overview. Acta Metall Sin 57:1126–1140

    CAS  Google Scholar 

  3. Zhong M, Jiang L, Bai H, Basu S, Wang Z, Wang C (2023) Simulating molten pool features of shipbuilding steel subjected to submerged arc welding. J Iron Steel Res Int. https://doi.org/10.1007/s42243-022-00908-y

    Article  Google Scholar 

  4. Park JY, Ryu JW, Sohn I (2014) In-situ crystallization of highly volatile commercial mold flux using an isolated observation system in the confocal laser scanning microscope. Metall Mater Trans B 45:1186–1191

    Article  CAS  Google Scholar 

  5. Yamamoto E, Yamazaki K, Suzuki K, Koshiishi F (2010) Effect of flux ratio in flux-cored wire on wire melting behaviour and fume emission rate. Weld World 54:R154–R159

    Article  CAS  Google Scholar 

  6. Wang Z, Zhang J, Zhong M, Wang C (2022) Insight into the viscosity–structure relationship of MnO–SiO2–MgO–Al2O3 fused submerged arc welding flux. Metall Mater Trans B 53:1364–1370

    Article  CAS  Google Scholar 

  7. Yang J, Zhang J, Ostrovski O, Zhang C, Cai D (2019) Effects of B2O3 on crystallization, structure, and heat transfer of CaO-Al2O3-based mold fluxes. Metall Mater Trans B 50:291–303

    Article  CAS  Google Scholar 

  8. Tsuji T, Nakai K, Tsuyama T (2014) Development of submerged arc welding method using hot wire. Weld World 58:713–718

    Article  Google Scholar 

  9. Sharma L, Chhibber R (2019) Design and development of submerged arc welding fluxes using TiO2-SiO2-CaO and SiO2-CaO-Al2O3 flux system. J Pressure Vessel Technol 233:739–762

    CAS  Google Scholar 

  10. Kim JB, Sohn I (2013) Influence of TiO2/SiO2 and MnO on the viscosity and structure in the TiO2-MnO-SiO2 welding flux system. J Non-Cryst Solids 379:235–243

    Article  CAS  Google Scholar 

  11. Wang Z, Liu Y, Zhong M, Li Z, Wang C (2022) Bubble evolution behaviors induced by CaO–Al2O3–SiO2–CaF2 fluxes subjected to high heat input submerged arc welding. Metall Mater Trans B 53:2763–2767

    Article  CAS  Google Scholar 

  12. Indacochea JE, Olson DL (1983) Relationship of weld-metal microstructure and penetration to weld-metal oxygen content. J Mater Energy Syst 5:139–148

    Article  CAS  Google Scholar 

  13. Xie X, Zhong M, Zhao T, Wang C (2022) Probing microstructural evolution in weld metals subjected to varied CaF2–TiO2 flux cored wires under high heat input electro-gas welding. J Iron Steel Res Int. https://doi.org/10.1007/s42243-022-00814-3

    Article  Google Scholar 

  14. Chai CS, Eagar TW (1981) Slag-metal equilibrium during submerged arc welding. Metall Mater Trans B 12:539–547

    Article  Google Scholar 

  15. Kim JB, Choi JK, Han IW, Sohn I (2016) High-temperature wettability and structure of the TiO2–MnO–SiO2–Al2O3 welding flux system. J Non-Cryst Solids 432:218–226

    Article  CAS  Google Scholar 

  16. Yuan X, Wu Y, Zhong M, Basu S, Wang Z, Wang C (2022) Profiling inclusion characteristics in submerged arc welded metals of EH36 shipbuilding steel treated by CaF2–TiO2 fluxes. Sci Technol Weld Joi 27:683–690

    Article  CAS  Google Scholar 

  17. Wang Z, Sohn I (2019) A review on reclamation and reutilization of ironmaking and steelmaking slags. J Sustain Metall 5:127–140

    Article  Google Scholar 

  18. Gu S, Wen G, Guo J, Wang Z, Tang P, Hou Z (2020) Effect of Al2O3 on non-Newtonian property and its relation to structure of mold fluxes during shear stress field at 1573 K. J Non-Cryst Solids 547:120312

    Article  CAS  Google Scholar 

  19. Zhou L, Wang W, Ma F, Li J, Wei J, Matsuura H, Tsukihashi F (2012) A kinetic study of the effect of basicity on the mold fluxes crystallization. Metall Mater Trans B 43:354–362

    Article  CAS  Google Scholar 

  20. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci 6:183–195

    Google Scholar 

  21. Lu B, Chen K, Wang W, Jiang B (2014) Effects of Li2O and Na2O on the crystallization behavior of lime-alumina-based mold flux for casting high-Al steels. Metall Mater Trans B 45:1496–1509

    Article  CAS  Google Scholar 

  22. Wang Z, Tang P, Wen G, Liu Q (2019) Effect of F replacing O2− on crystallization behavior of CaO–SiO2–Al2O3 continuous casting mold flux. ISIJ Int 59:367–374

    Article  CAS  Google Scholar 

  23. Tian H, Wang Z, Zhao T, Wang C (2022) A Raman and multinuclear 29Si, 27Al, and 19F NMR study on the structural roles of CaF2 in SiO2–CaO–Al2O3-based welding fluxes. Metall Mater Trans B 53:232–241

    Article  CAS  Google Scholar 

  24. Yang J, Cui Y, Wang L, Sasaki Y, Zhang J, Ostrovski O, Kashiwaya Y (2015) In-situ study of crystallization behavior of a mold flux using single and double hot thermocouple technique. Steel Res Int 86:636–643

    Article  CAS  Google Scholar 

  25. Ediger MD, Harrowell P, Yu L (2008) Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J Chem Phys 128:034709

    Article  CAS  Google Scholar 

  26. Wang Z, Sohn I (2018) Effect of the Al2O3/SiO2 mass ratio on the crystallization behavior of CaO-SiO2-MgO-Al2O3 slags using confocal laser scanning microscopy. Ceram Int 44:19268–19277

    Article  CAS  Google Scholar 

  27. Cruz-Crespo A, Fuentes RF, Scotti A (2010) The influence of calcite, fluorite, and rutile on the fusion-related behavior of metal cored coated electrodes for hardfacing. J Mater Eng Perform 19:685–692

    Article  CAS  Google Scholar 

  28. Natalie CA, Olson DL, Blander M (1986) Physical and chemical behavior of welding fluxes. Annu Rev Mater Sci 16:389–413

    Article  CAS  Google Scholar 

  29. Wang H, Qin R, He G (2016) SiO2 and CaF2 behavior during shielded metal arc welding and their effect on slag detachability of the CaO-CaF2-SiO2 type ENiCrFe-7-covered electrode. Metall Mater Trans A 47:4530–4542

    Article  CAS  Google Scholar 

  30. Yeo TM, Cho JW (2021) Effect of Li2O on non-isothermal crystallization of cuspidine in CaO–SiO2–CaF2 glasses. Metall Mater Trans B 52:2186–2193

    Article  CAS  Google Scholar 

  31. Olson DL, Edwards GR, Marya S (1992) Physical and chemical phenomena influencing slag detachability during welding. Key Eng Mater 69:253–268

    Article  Google Scholar 

  32. Li J, Zhang Z, Liu L, Wang W, Wang X (2013) Influence of basicity and TiO2 content on the precipitation behavior of the Ti-bearing blast furnace slags. ISIJ Int 53:1696–1703

    Article  CAS  Google Scholar 

  33. Gao P, Li G, Gu X, Han Y (2020) Reduction kinetics and microscopic properties transformation of boron-bearing iron concentrate–carbon-mixed pellets. Min Proc Ext Met Rev 41:162–170

    Article  CAS  Google Scholar 

  34. Ranganathan S, Von Heimendahl M (1981) The three activation energies with isothermal transformations: applications to metallic glasses. J Mater Sci 16:2401–2404

    Article  CAS  Google Scholar 

  35. Shi C, Seo MD, Wang H, Cho JW, Kim SH (2015) Crystallization kinetics and mechanism of CaO-Al2O3-based mold flux for casting high-aluminum trip steels. Metall Mater Trans B 46:345–356

    Article  CAS  Google Scholar 

  36. Liu J, Chen G, Yan P, Planpain B, Moelans N, Guo M (2014) In-situ observation of isothermal CaSiO3 crystallization in CaO–Al2O3–SiO2 melts: a study of the effects of temperature and composition. J Cryst Growth 402:1–8

    Article  CAS  Google Scholar 

  37. Jackson KA (1958) Mechanism of growth, liquid metals solidification. Am Soc Met 174–186

  38. Seo MD, Shi C, Baek JY, Cho JW, Kim SH (2015) Kinetics of isothermal melt crystallization in CaO-SiO2-CaF2-based mold fluxes. Metall Mater Trans B 46:2374–2383

    Article  CAS  Google Scholar 

  39. Harada Y, Kusada K, Sukenaga S, Yamamura H, Ueshima Y, Mizoguchi T, Saito N, Nakashima K (2014) Effects of agitation and morphology of primary crystalline phase on crystallization behavior of CaO-SiO2-CaF2 supercooled melts. ISIJ Int 54:2071–2076

    Article  CAS  Google Scholar 

  40. Li J, Lai F, Leng M, Liu Q, Yang J, Ren S, Kong M (2021) In situ observations of isothermal cuspidine crystallization in molten mould fluxes with varying basicity. Ironmak Steelmak 48:149–154

    Article  CAS  Google Scholar 

  41. Ma J, Li W, Fu G, Zhu M (2021) Effect of B2O3 on the melting temperature and viscosity of CaO-SiO2-MgO-Al2O3-TiO2-Cr2O3 slag. J Sustain Metall 7:1190–1199

    Article  Google Scholar 

  42. Yan W, Chen W, Yang Y, McLean A (2019) Viscous characteristics and modelling of CaO-Al2O3-based mould flux with B2O3 as a substitute for CaF2. Ironmak Steelmak 46:347–352

    Article  CAS  Google Scholar 

  43. Yang J, Kim Y, Sohn I (2021) Gaining insights on high-temperature thermal conductivity and structure of oxide melts through experimental and molecular dynamics simulation study. J Mater Res Technol 10:268–281

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the National Natural Science Foundation of China (Grant Nos. U20A20277, 52104295, 52050410341, 52150610494), National Key Research and Development Program of China (Grant No. 2022YFE0123300), Young Elite Scientists Sponsorship Program by CAST (YESS) (Grant No. 2021-2023QNRC001) and Research Fund for Central Universities (Grant Nos. N2025025, N2125016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was Sharif Jahanshahi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zheng, X., Zhong, M. et al. High-Temperature Crystallization Characteristics of CaF2-SiO2 Fluxes Geared Towards High Heat Input Submerged Arc Welding. J. Sustain. Metall. 9, 826–836 (2023). https://doi.org/10.1007/s40831-023-00694-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-023-00694-1

Keywords

Navigation