Skip to main content
Log in

Recycling of Iron and Alumina from Red Mud After Co-Sintering with Phosphogypsum

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Red mud (RM) and phosphogypsum (PG) are two types of industrial solid waste that not only pollute the environment but also fail to adequately exploit the potential of secondary resources. In this study, a three-step process based on alkali lime sintering, leaching, and magnetic separation was developed to realize the recovery of aluminum and iron by the simultaneous treatment of RM and PG. The effects of the sintering temperature, sintering atmosphere, sintering time, CaO/SiO2 molar ratio (C/S), and Na2O/(Al2O3 + Fe2O3) molar ratio (N/A) on the process were investigated. The aluminum recovery, iron recovery, and iron grade were 69%, 78%, and 83.8%, respectively, for a sintering temperature of 1100 °C, a sintering atmosphere of N2, a sintering time of 30 min, a C/S ratio of 2.0, and an N/A ratio of 1.3. The main form of S in the slag was CaS, and the final reduction product of hematite was metallic Fe. In comparative experiments using CaO as an alternative Ca source, the use of PG afforded a larger particle size of the obtained metallic Fe, indicating improved agglomeration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Khairul MA, Zanganeh J, Moghtaderi B (2019) The composition, recycling and utilisation of Bayer red mud. Resour Conserv Recycl 141:483–498

    Article  Google Scholar 

  2. Liu DY, Wu CS (2012) Stockpiling and comprehensive utilization of red mud research progress. Materials 5(7):1232–1246. https://doi.org/10.3390/ma5071232

    Article  CAS  Google Scholar 

  3. Wang S, Jin H, Deng Y, Xiao Y (2021) Comprehensive utilization status of red mud in China: a critical review. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.125136

    Article  Google Scholar 

  4. Lu Y, Liu XM, Zhang ZQ, Wang YG, Xue Y, Wang MF (2022) Applications of red mud as a masonry material: a review. Bull Environ Contam Toxicol. https://doi.org/10.1007/s00128-021-03437-8

    Article  Google Scholar 

  5. Silveira NCG, Martins MLF, Bezerra ACS, Araújo FGS (2021) Red mud from the aluminium industry: production, characteristics, and alternative applications in construction materials—a review. Sustainability 13(22):12741. https://doi.org/10.3390/su132212741

    Article  CAS  Google Scholar 

  6. Balakrishnan M, Batra VS, Hargreaves JSJ, Pulford ID (2011) Waste materials—catalytic opportunities: an overview of the application of large scale waste materials as resources for catalytic applications. Green Chem 13(1):16–24. https://doi.org/10.1039/c0gc00685h

    Article  CAS  Google Scholar 

  7. Wang SB, Ang HM, Tade MO (2008) Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere 72(11):1621–1635. https://doi.org/10.1016/j.chemosphere.2008.05.013

    Article  CAS  Google Scholar 

  8. Hua YM, Heal KV, Friesl-Hanl W (2017) The use of red mud as an immobiliser for metal/metalloid-contaminated soil: a review. J Hazard Mater 325:17–30. https://doi.org/10.1016/j.jhazmat.2016.11.073

    Article  CAS  Google Scholar 

  9. Mukiza E, Zhang LL, Liu XM, Zhang N (2019) Utilization of red mud in road base and subgrade materials: a review. Resour Conserv Recycl 141:187–199. https://doi.org/10.1016/j.resconrec.2018.10.031

    Article  Google Scholar 

  10. Zhang JZ, Yao ZY, Wang K, Wang F, Jiang HG, Liang M, Wei JC, Airey G (2021) Sustainable utilization of bauxite residue (red mud) as a road material in pavements: a critical review. Constr Build Mater 270:121419. https://doi.org/10.1016/j.conbuildmat.2020.121419

    Article  CAS  Google Scholar 

  11. Liu YJ, Naidu R (2014) Hidden values in bauxite residue (red mud): recovery of metals. Waste Manage 34(12):2662–2673. https://doi.org/10.1016/j.wasman.2014.09.003

    Article  CAS  Google Scholar 

  12. Wang MF, Liu XM (2021) Applications of red mud as an environmental remediation material: a review. J Hazard Mater 408:124420. https://doi.org/10.1016/j.jhazmat.2020.124420

    Article  CAS  Google Scholar 

  13. Chernysh Y, Yakhnenko O, Chubur V, Roubík H (2021) Phosphogypsum recycling: a review of environmental issues, current trends, and prospects. Appl Sci 11(4):1575. https://doi.org/10.3390/app11041575

    Article  CAS  Google Scholar 

  14. Lutke SF, Oliveira MLS, Silva LFO, Cadaval TRS, Dotto GL (2020) Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry. Chemosphere 256:127138. https://doi.org/10.1016/j.chemosphere.2020.127138

    Article  CAS  Google Scholar 

  15. Ning TJ (2011) Effect of wet-process phosphoric acid technology on phosphogypsum quality [dissertation]. Chongqing University, Chongqing

    Google Scholar 

  16. Du BX, Huang K (2014) The research on comprehensive utilization of phosphogypsum. Adv Appl Sci Manuf, PTS 1 and 2 1368:850–851. https://doi.org/10.4028/www.scientific.net/AMR.850-851.1368

    Article  Google Scholar 

  17. Campos MP, Costa LJP, Nisti NB, Mazzilli BP (2017) Phosphogypsum recycling in the building materials industry: assessment of the radon exhalation rate. J Environ Radioact 172:232–236. https://doi.org/10.1016/j.jenvrad.2017.04.002

    Article  CAS  Google Scholar 

  18. Gazquez MJ, Bolivar JP, Vaca F, García-Tenorio R, Caparros A (2013) Evaluation of the use of TiO2 industry red gypsum waste in cement production. Cement Concr Compos 37:76–81. https://doi.org/10.1016/j.cemconcomp.2012.12.003

    Article  CAS  Google Scholar 

  19. Wei ZH (2022) Deng ZB (2022) Research hotspots and trends of comprehensive utilization of phosphogypsum: bibliometric analysis. J Environ Radioact 242:106778. https://doi.org/10.1016/j.jenvrad.2021.106778

    Article  CAS  Google Scholar 

  20. Rashad AM (2017) Phosphogypsum as a construction material. J Clean Prod 166:732–743. https://doi.org/10.1016/j.jclepro.2017.08.049

    Article  CAS  Google Scholar 

  21. Li YW, Luo XH, Li CX, Millar GJ, Jiang J, Xue SG (2019) Variation of alkaline characteristics in bauxite residue under phosphogypsum amendment. J Central South Univ 26(2):361–372. https://doi.org/10.1007/s11771-019-4008-8

    Article  CAS  Google Scholar 

  22. Xue S, Li M, Jiang J, Millar GJ, Li C, Kong X (2019) Phosphogypsum stabilization of bauxite residue: conversion of its alkaline characteristics. J Environ Sci (China) 77:1–10. https://doi.org/10.1016/j.jes.2018.05.016

    Article  CAS  Google Scholar 

  23. Lopes G, Ferreira PA, Pereira FG, Curi N, Rangel WM, Guilherme LR (2016) Beneficial use of industrial by-products for phytoremediation of an arsenic-rich soil from a gold mining area. Int J Phytoremediation 18(8):777–784. https://doi.org/10.1080/15226514.2015.1131240

    Article  CAS  Google Scholar 

  24. Jiu YL, Wang N, Xu RK, Tiwari D (2010) Potential of industrial byproducts in ameliorating acidity and aluminum toxicity of soils under tea plantation. Pedosphere 5:645–654. https://doi.org/10.1016/S1002-0160(10)60054-9

    Article  Google Scholar 

  25. Tan MD, Kang GO, Kim YS (2019) Development of a new cementless binder for controlled low strength material (CLSM) using entirely by-products. Constr Build Mater 206:576–589. https://doi.org/10.1016/j.conbuildmat.2019.02.088

    Article  CAS  Google Scholar 

  26. Kim YS, Tran TQ, Kang GQ, Do TM (2019) Stabilization of a residual granitic soil using variousnew green binders. Constr Build Mater 223:724–735. https://doi.org/10.1016/j.conbuildmat.2019.07.019

    Article  CAS  Google Scholar 

  27. Cheng Y, Sun ZY, Wei JC (2014) Special curing agent for red mud roadbed by Bayer method, its preparation method and application method, Chinese Patent, Appl. CN20145601.0, 2016.

  28. Tq T, Kim YS, Kang GO, Dinh BH, Do TM (2019) Feasibility of reusing marine dredged claystabilized by a combination of by-products in coastal road construction. Transp Record 2673(12):519–528. https://doi.org/10.1177/0361198119868196

    Article  Google Scholar 

  29. Shi Y, Tong SS, Li XB, Chen L, Yao XJ, Liu YF, et al (2019) Preparation method of phosphogypsum-red mud filling body based on MICP technology, Chinese Patent, Appl. CN201911023546.8.

  30. Li ZF, Zhang J, Li S, Gao Y, Liu C, Qi Y (2020) Effect of different gypsums on the workability and mechanical properties of red mud-slag based grouting materials. J Cleanr Prod 245:118759. https://doi.org/10.1016/j.jclepro.2019.118759

    Article  CAS  Google Scholar 

  31. Huang XQ (2014) A kind of phosphogypsum based cementitious material and its application in mine tailings filling. Chinese Patent, Appl. CN201410311731.8.

  32. Lopes G, Guilherme LR, Costa ET, Curi N, Penha HG (2013) Increasing arsenic sorption on red mud by phosphogypsum addition. J Hazard Mater 262:1196–1203. https://doi.org/10.1016/j.jhazmat.2012.06.051

    Article  CAS  Google Scholar 

  33. Wu YJ, Li M, Fu D, Santini TC, Jiang J, William H et al (2020) Simulation study for the formation of alkaline efflorescence on bauxite residue disposal areas following the phosphogypsum addition. J Clean Prod 262:121266. https://doi.org/10.1016/j.jclepro.2020.121266

    Article  CAS  Google Scholar 

  34. Wang F, Pan H, Xu J (2020) Evaluation of red mud based binder for the immobilization of copper, lead and zinc. Environ Pollut 263(Pt A):114416. https://doi.org/10.1016/j.envpol.2020.114416

    Article  CAS  Google Scholar 

  35. Tian T, Zhou J, Zhu F, Ye Y, Guo Y, Hartley W et al (2019) Effect of amendments on the leaching behavior of alkaline anions and metal ions in bauxite residue. J Environ Sci (China) 85:74–81. https://doi.org/10.1016/j.jes.2019.05.005

    Article  CAS  Google Scholar 

  36. Fan DC, Ni W, Yan AY, Wang JY, Cui WH (2015) Orthogonal experiments on direct reduction of carbon-bearing pellets of bayer red mud. J Iron Steel Res Int 22:686–693. https://doi.org/10.1016/S1006-706X(15)30058-3

    Article  Google Scholar 

  37. Chun TJ, Zhu DQ, Pan J, He Z (2014) Preparation of metallic iron powder from red mud by sodium salt roasting and magnetic separation. Can Metall Quart 53:183–189. https://doi.org/10.1179/1879139513Y.0000000114

    Article  CAS  Google Scholar 

  38. Ning P, Zheng SC, Ma LP, Du YL, Zhang W, Niu XK, Wang FY (2010) Kinetics and thermodynamics studies on the decompositions of phosphogypsum in different atmospheres. Adv Mater Res 160–162(2011):842–848. https://doi.org/10.4028/www.scientific.net/AMR.160-162.842

    Article  CAS  Google Scholar 

  39. Yang CY, Wei Y, Ye FB, Ding YG, Wu YX (2011) Effect of additives on thermal decomposition of phosphogypsum. Adv Mater Res 415–417(2012):735–740. https://doi.org/10.4028/www.scientific.net/AMR.415-417.735

    Article  CAS  Google Scholar 

  40. Li XB, Xiao W, Liu W, Liu DH, Peng ZH, Zhou QS, Qi TG (2009) Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering. Trans Nonferrous Met Soc China 19:1342–1347. https://doi.org/10.1016/S1003-6326(08)60447-1

    Article  CAS  Google Scholar 

  41. Li GH, Mx L, Mj R, Jiang T, Jq Z, Zhang Y (2014) Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. J Hazard Mater 280:774–780. https://doi.org/10.1016/j.jhazmat.2014.09.005

    Article  CAS  Google Scholar 

  42. Bi SW, Yu HY (2006) Alumina production process. Chemical Industry Press, China

    Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (Region project Nos. 52164036), the National Natural Science Foundation of China (Nos. U1960201), and Guizhou Province Graduate Research Fund (YJSCXJH[2020]185, YJSCXJH[2020]027),

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xin Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was Dimitrios Panias.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y.D., Jin, H.X., Wang, M.L. et al. Recycling of Iron and Alumina from Red Mud After Co-Sintering with Phosphogypsum. J. Sustain. Metall. 9, 408–422 (2023). https://doi.org/10.1007/s40831-023-00659-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-023-00659-4

Keywords

Navigation