Skip to main content
Log in

Rapid Oxidative Dissolution of Metallic Tin in Alkaline Solution Containing Iodate Ions

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Efficient and environmentally friendly tin leaching methods are of significant interest for the separation and recovery of tin from various materials such as tin-plated scraps and waste printed circuit boards. In this study, we investigated the oxidative dissolution of metallic tin in an alkaline solution. A pure tin specimen was leached at 30 °C using different oxidizing agents in a 1 M sodium hydroxide solution. The results demonstrated that iodate ion (IO3) is one of the most effective oxidizing agents for dissolving tin in alkaline media. A fundamental mechanism for tin dissolution into the leaching solution containing IO3 is proposed based on electrochemical measurements. In addition to the rapid dissolution of tin without much heating, the benefits of using IO3 as an oxidizing agent include its electrochemical regenerability. Thus, alkaline leaching using IO3 as an oxidizing agent is a potentially efficient technique for separating and recovering tin.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lam CW, Lim SR, Schoenung JM (2011) Environmental and risk screening for prioritizing pollution prevention opportunities in the U.S. printed wiring board manufacturing industry. J Hazard Mater 189:315–322. https://doi.org/10.1016/j.jhazmat.2011.02.044

    Article  CAS  Google Scholar 

  2. Mark HF, Othmer DF, Overberger CG, Seaborg GT, Grayson M, Eckroth D (eds) (1983) Encyclopedia of chemical technology, vol 23, 3rd edn. Wiley, New York, pp 35–41

    Google Scholar 

  3. Habashi F (ed) (1997) Handbook of extractive metallurgy, vol II. Wiley, Weinheim, pp 683–713

    Google Scholar 

  4. Yang C, Tan Q, Liu L, Dong Q, Li J (2017) Recycling tin from electronic waste: a problem that needs more attention. ACS Sustain Chem Eng 5:9586–9598. https://doi.org/10.1021/acssuschemeng.7b02903

    Article  CAS  Google Scholar 

  5. Kaya M (2019) Electronic waste and printed circuit board recycling technologies. Springer, New York

    Book  Google Scholar 

  6. Tan Q, Liu L, Yu M, Li J (2020) An innovative method of recycling metals in printed circuit board (PCB) using solutions from PCB production. J Hazard Mater 390:121892. https://doi.org/10.1016/j.jhazmat.2019.121892

    Article  CAS  Google Scholar 

  7. Yang C, Li J, Tan Q, Liu L, Dong Q (2017) Green process of metal recycling: coprocessing waste printed circuit boards and spent tin stripping solution. ACS Sustain Chem Eng 5:3524–3534. https://doi.org/10.1021/acssuschemeng.7b00245

    Article  CAS  Google Scholar 

  8. Jung M, Yoo K, Alorro RD (2017) Dismantling of electric and electronic components from waste printed circuit boards by hydrochloric acid leaching with stannic ions. Mater Trans 58:1076–1080. https://doi.org/10.2320/matertrans.M2017096

    Article  CAS  Google Scholar 

  9. Jian-guang Y, Jie L, Si-yao P, Yuan-lu L, Wei-qiang S (2016) A new membrane electro-deposition based process for tin recovery from waste printed circuit boards. J Hazard Mater 304:409–416. https://doi.org/10.1016/j.jhazmat.2015.11.007

    Article  CAS  Google Scholar 

  10. Zhang X, Guan J, Guo Y, Cao Y, Guo J, Yuan H, Su R, Liang B, Gao G, Zhou Y, Xu J, Guo Z (2017) Effective dismantling of waste printed circuit board assembly with methanesulfonic acid containing hydrogen peroxide. Environ Prog Sustain Energy 36:873–878. https://doi.org/10.1002/ep.12527

    Article  CAS  Google Scholar 

  11. Zhou Y, Zhang X, Guan J, Wang J, Bing N, Zhu L (2016) Research on reusing technology for disassembling waste printed circuit boards. Procedia Environ Sci 31:941–946. https://doi.org/10.1016/j.proenv.2016.02.117

    Article  CAS  Google Scholar 

  12. Zhang X, Guan J, Guo Y, Yan X, Yuan H, Xu J, Guo J, Zhou Y, Su R, Guo Z (2015) Selective desoldering separation of tin-lead alloy for dismantling of electronic components from printed circuit boards. ACS Sustain Chem Eng 3:1696–1700. https://doi.org/10.1021/acssuschemeng.5b00136

    Article  CAS  Google Scholar 

  13. Taninouchi Y, Saito N, Kishimoto A, Uda T (2019) Fundamental study on e-scrap recycling technique using alkaline medium. Proc. COM 2019 Hosting Copper 2019, manuscript no. 594613

  14. Taninouchi Y, Uda T (2019) Oxidizing agent for effective alkaline leaching of Sn. Proc. MMIJ Fall Meeting, manuscript no. 1K0301–03–01 (in Japanese)

  15. Taninouchi Y, Kishimoto A, Uda T (2021) Japan Patent, unexamined patent application no. P2021–31689A (in Japanese)

  16. Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solution. CRC Press, Boca Raton

    Google Scholar 

  17. Lee LSY, Lawson F (1989) The leaching rate of tin metal in oxygenated sodium hydroxide solutions. Hydrometallurgy 23:23–35. https://doi.org/10.1016/0304-386X(89)90015-7

    Article  CAS  Google Scholar 

  18. Uchida S, Suzuki R, Tokuda M (1996) Kinetics of tin dissolution in sodium hydroxide solution. J Jpn Inst Met 60:826–833. https://doi.org/10.2320/jinstmet1952.60.9_826 (in Japanese)

    Article  CAS  Google Scholar 

  19. Kekési T, Török TI, Kabelik M (2000) Extraction of tin from scrap by chemical and electrochemical methods in alkaline media. Hydrometallurgy 55:213–222. https://doi.org/10.1016/S0304-386X(99)00091-2

    Article  Google Scholar 

  20. Jun WS, Yun PS, Lee EC (2004) Leaching behavior of tin from Sn-Fe alloys in sodium hydroxide solutions. Hydrometallurgy 73:71–80. https://doi.org/10.1016/j.hydromet.2003.08.002

    Article  CAS  Google Scholar 

  21. Cheng CQ, Yang F, Zhao J, Wang LH, Li XG (2011) Leaching of heavy metal elements in solder alloys. Corros Sci 53:1738–1747. https://doi.org/10.1016/j.corsci.2011.01.049

    Article  CAS  Google Scholar 

  22. Ranitović M, Kamberović Ž, Korać M, Jovanović N, Mihjalović A (2016) Hydrometallurgical recovery of tin and lead from waste printed circuit boards (WPCBs): limitations and opportunities. Metalurgija 55:153–156

    Google Scholar 

  23. Rosenstein C, Hirsch S (1999) Stripping metallic coatings. Met Finish 97(Supplement 1):456–465. https://doi.org/10.1016/S0026-0576(99)80047-6

    Article  Google Scholar 

  24. Durney LJ (2000) Electrochemical and chemical deposition. Ullmann’s Encycl Ind Chem 12:161–219. https://doi.org/10.1002/14356007.a09_125

    Article  CAS  Google Scholar 

  25. Kotani S, Ide H, Kashiwabara T (1995) Japan patent, unexamined patent application no. Hei 7–11468 (in Japanese)

  26. Rudnik E, Sikora P (2016) Study of cementation of tin on copper and tin stripping from copper substrate. Arch Metall Mater 61:593–598. https://doi.org/10.1515/amm-2016-0101

    Article  CAS  Google Scholar 

  27. Narieda H, Sonoda Y, Izaki M (2012) Method of detinning Sn plating layer on Cu-based material. US patent no. US8262769B2

  28. Williams AS, Letize RA (1987) Process for stripping tin or tin-lead alloy from copper. US patent no. 4687545

  29. Kim MS, Lee JC (2015) Apparatus and method for recovery of valuable metals by alkali leaching. US patent no. US9194019B2

  30. Thomas FM (2005) New color photographic developer kit. European patent no. EP1086402B1

  31. Balej J (1985) Water vapor partial pressure and water activities in potassium and sodium hydroxide solutions over wide concentration and temperature ranges. Int J Hydrog Energy 10:233–243. https://doi.org/10.1016/0360-3199(85)90093-X

    Article  CAS  Google Scholar 

  32. Simonson JM, Mesmer RE, Rogers PSZ (1989) The enthalpy of dilution and apparent molar heat capacity of NaOH(aq) to 523 K and 40 MPa. J Chem Thermodyn 21:561–584. https://doi.org/10.1016/0021-9614(89)90172-9

    Article  CAS  Google Scholar 

  33. Yasunishi A (1978) Solubility of oxygen in aqueous electrolyte solutions. Kagaku Kogaku Ronbunshu 4:185–189. https://doi.org/10.1252/kakoronbunshu.4.185 (in Japanese)

    Article  CAS  Google Scholar 

  34. Tromans D (1998) Temperature and pressure dependent solubility of oxygen in water: a thermodynamic analysis. Hydrometallurgy 48:327–342. https://doi.org/10.1016/S0304-386X(98)00007-3

    Article  CAS  Google Scholar 

  35. Katoh M (1962) The anodic behavior of tin in an alkaline solution. Bull Chem Soc Jpn 35:1711–1715. https://doi.org/10.1246/bcsj.35.1711

    Article  Google Scholar 

  36. Shams El Din AM, Abd El Wahab FM (1964) On the anodic passivity of tin in alkaline solutions. Electrochim Acta 9:883–896. https://doi.org/10.1016/0013-4686(64)85039-8

    Article  CAS  Google Scholar 

  37. Awad SA, Kassab A (1970) Mechanism of anodic dissolution of tin in sodium hydroxide solutions. J Electroanal Chem 26:127–135. https://doi.org/10.1016/S0022-0728(70)80070-5

    Article  CAS  Google Scholar 

  38. Stirrup BN, Hampson NA (1976) Anodic passivation of tin in sodium hydroxide solutions. J Electroanal Chem 67:45–56. https://doi.org/10.1016/S0022-0728(76)80063-0

    Article  CAS  Google Scholar 

  39. Stirrup BN, Hampson NA (1976) The active dissolution of tin in concentrated alkaline solution. J Electroanal Chem 67:57–67. https://doi.org/10.1016/S0022-0728(76)80064-2

    Article  CAS  Google Scholar 

  40. Ansell RO, Dickinson T, Povey AF, Sherwood PM (1977) X-ray photoelectron spectroscopic studies of tin electrode after polarization in sodium hydroxide solution. J Electrochem Soc 124:1360–1364. https://doi.org/10.1149/1.2133654

    Article  CAS  Google Scholar 

  41. Dickinson T, Lotfi S (1978) The anodic dissolution of tin in sodium hydroxide solutions. Electrochim Acta 23:513–519. https://doi.org/10.1016/0013-4686(78)85029-4

    Article  CAS  Google Scholar 

  42. Abd El Wahab FM, Asd El Kader JM, El Shayeb HA, Shams El Din AM (1978) On the pitting corrosion of tin in aqueous solutions. Corros Sci 18:997–1009. https://doi.org/10.1016/0010-938X(78)90034-3

    Article  CAS  Google Scholar 

  43. Do DH, Tissot P (1979) On the dissolution of tin in alkaline phosphate solution. J Electroanal Chem 102:59–64. https://doi.org/10.1016/S0022-0728(79)80029-7

    Article  Google Scholar 

  44. Abdel Aal MS, Osman AH (1980) Anodic polarization of tin, nickel, and a 65/35 tin-nickel alloy in alkaline media containing halide ions. Corrosion 36:591–596. https://doi.org/10.5006/0010-9312-36.11.591

    Article  CAS  Google Scholar 

  45. Muralidharan VS, Thangavel K, Rajagopalan KS (1983) The triangular potential sweep voltammetric studies on pure tin in concentrated sodium hydrogen solutions. Electrochim Acta 28:1611–1618. https://doi.org/10.1016/0013-4686(83)85225-6

    Article  CAS  Google Scholar 

  46. Burleigh TD, Gerischer H (1988) Photoelectrochemical study of oxide layers on tin in 1N KOH. Electrochem Sci Technol 135:2938–2942. https://doi.org/10.1149/1.2095466

    Article  CAS  Google Scholar 

  47. Ammar IA, Darwish S, Khalil MW, El-Taher S (1990) Anodic oxide film formation on tin. Corrosion 46:197–202. https://doi.org/10.5006/1.3585091

    Article  CAS  Google Scholar 

  48. Moina CA, Ybarra GO (2001) Study of passive films formed on Sn in the 7–14 pH range. J Electroanal Chem 504:175–183. https://doi.org/10.1016/S0022-0728(01)00432-6

    Article  CAS  Google Scholar 

  49. Begum SN, Basha A, Muralidharan VS, Lee CW (2012) Electrochemical behavior of tin in alkali solutions containing halides. Mater Chem Phys 132:1048–1052. https://doi.org/10.1016/j.matchemphys.2011.12.063

    Article  CAS  Google Scholar 

  50. Kim SK, Lee JC, Jeong J, Yoo K (2012) The effect of oxygen and hydroxide ion on electrochemical leaching behavior of tin. Mater Trans 53:2208–2210. https://doi.org/10.2320/matertrans.M2012311

    Article  CAS  Google Scholar 

  51. Haight GP Jr, Johansson L (1968) The complex formation of tin(II) with iodide in aqueous solution. Acta Chem Scand 22:961–971. https://doi.org/10.3891/acta.chem.scand.22-0961

    Article  CAS  Google Scholar 

  52. Séby F, Potin-Gautier M, Giffaut E, Donard OFX (2001) A critical review of thermodynamic data for inorganic tin species. Geochim Cosmochim Acta 65:3041–3053. https://doi.org/10.1016/S0016-7037(01)00645-7

    Article  Google Scholar 

  53. Schumacher JC (1960) Electrolytic production of potassium iodate. Chem Eng Prog 56:83–84

    CAS  Google Scholar 

  54. Tang Y, Li Y, Yu Z, Bai Y, Chen Y, Sun Y, Wan P (2012) Energy-saving synthesis of potassium iodate via electrolysis of potassium iodine and O2 in a membraneless cell. Green Chem 14:334–337. https://doi.org/10.1039/C2GC16182F

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was conducted in the laboratory endowed by Mitsubishi Materials Corporation (Laboratory of Non-ferrous Extractive Metallurgy). The authors are grateful to Dr. Akihiro Kishimoto of Kyoto University, Prof. Hisaaki Fukushima of Kyushu University, Prof. Takashi Nakamura of Tohoku University, and Messrs. Tetsuro Sakai, Shigehiko Iwahori, and Akira Kaneda of Mitsubishi Materials Corporation for their valuable comments and suggestions. This research was financially supported by JST-Mirai Program Grant Number JPMJMI18C1, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-ki Taninouchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

The contributing editor for this article was Atsushi Shibayama.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taninouchi, Yk., Uda, T. Rapid Oxidative Dissolution of Metallic Tin in Alkaline Solution Containing Iodate Ions. J. Sustain. Metall. 7, 1762–1771 (2021). https://doi.org/10.1007/s40831-021-00450-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00450-3

Keywords

Navigation