Skip to main content

Advertisement

Log in

Metallurgical Effects of Introducing Powdered WEEE to a Molten Slag Bath

  • Innovations in WEEE Recycling
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Powders and dusts from e-waste recycling processes are a valuable source for different metals like copper or precious metals such as silver and gold. Hence, the recycling of this fine fraction is of great interest. In addition to these precious metals, large amounts of organic, ceramic, and oxidic elements emerge, which have a tremendous influence on slag properties and the entire melting process. In order to recycle the valuable metals and use the energy of the material accompanying the organic constituents, the IME Institute of RWTH Aachen University is conducting research on the metallurgical effects of these fractions when introduced into a molten slag bath and developing solutions to recycle the component metals. Within this research, the influences on the slag phase are simulated using the thermochemical software FactSage™, and the material-specific oxygen amount required to combust the organic constituents is calculated. The results are tested and optimized in preliminary laboratory-scale experiments and later scaled up to technical size. The experimental results show a possible reduction in the slag phase’s liquidus temperature by adding different additives and the feasibility of autothermal melting of fine fractions with good metal recovery rates and low metal distribution to the mineral phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Baldé C et al (2015) The global E-waste monitor—2014. United Nations University

  2. Rhamdhani M et al (2014) Metal extraction processes for electronic waste and existing industrial routes: a review and australian perspective. Resources 3(1):152–179

    Article  Google Scholar 

  3. Veit H, Bernardes A (2015) Electronic waste: recycling techniques. Springer, Berlin

    Book  Google Scholar 

  4. Bartos R et al (2015) Stahlfibel. Verlag Stahleinsen GmbH

  5. Wang S et al (2003) Verhalten der Reduktion und Volumenänderung von selbstreduzierenden Pellets mit DSD und Kohle als Reduktionsmittel, 18. Aachener Stahlkolloqium, pp 29–41

  6. Kowitwarangkul P (2014) Reduction behavior of self-reducing pellet (SRP) for low height blast furnace. Steel Res Int 85(11):1501–1509

    Article  CAS  Google Scholar 

  7. Nascimiento RC et al (1999) Kinetics and catastrophic swelling during reduction of iron ore in carbon bearing pellets. Ironmak Steelmak 26(3):182–186

    Article  Google Scholar 

  8. Lahiri AK et al (2004) Foaminess of slag: cause and control. In: VII international conference on molten slags fluxes and salts. The South African Institute of Mining and Metallurgy, Johannesburg

  9. Liukkonen M et al (2012) A compilation of slag foaming phenomenon research theoretical studies, industrial experiments and modelling. VTT Technology 63

  10. Merz M et al (2006) New slag foaming experiences with high-chromium steels. Stahl und Eisen 126(1):49–53

    CAS  Google Scholar 

  11. Shaw D (1996) Recycling of oily millscale and EAF-baghouse dust by re-injection into an EAF using the carbofer process. Working party on steel, seminar on the processing, utilization and disposal of waste in the steel industry, Ungarn

  12. Liebman M (2000) The current status of electric arc furnace dust recycling in North America, in Recycling of metals and engineered materials. Wiley, Hoboken

    Google Scholar 

  13. Krüger J et al (1998) Einsatz von sekundären, zink- und bleihaltigen Materialien bei der Sinterröstung im Imperial Smelting Prozess. Rohstofftechnik im Wandel, Aachener Umwelttage der Fakultät für Bergbau, Hüttenwesen und Geowissenschaften

  14. Wang R et al (2014) Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review. Elsevier, Amsterdam

    Book  Google Scholar 

  15. Hagelüken C (2006) Improving metal returns and eco-efficiency in electronics recycling—a holistic approach for interface optimization between pre-processing and integrated metals smelting and refining. In: Proceedings of the 2006 IEEE international conference

  16. Rotter V et al (2014) Anlagenbilanzierung als Bewertungsinstrument für eine Qualitäts-recycling von Elektroaltgeräten. Recycling und Rohstoffe 7:191–203

    Google Scholar 

  17. Martens H (2011) Recycling von Elektro-und Elektronikaltgeräten. In: Recyclingtechnik, pp 273–301

  18. Bigum M et al (2012) Metal recovery from high-grade WEEE: a life cycle assessment. J Hazard Mater 207–208:8–14

    Article  Google Scholar 

  19. Chancerel P et al (2009) Edelmetallrückgewinnung aus Elektro- und Elektronikaltgeräten durch Aufbereitung. Müll und Abfall 2:78–82

    Google Scholar 

  20. Wang F et al (2015) Mineralogical analysis of dust collected from typical recycling line of waste printed circuit boards. Waste Manag 43:434–441

    Article  CAS  Google Scholar 

  21. Espinosa D et al (2015) Electronic waste: recycling techniques (chapter 8). Springer, Berlin

    Google Scholar 

  22. Shuey SA et al (2006) Pyrometallurgical processing of electronic waste. In: SME Annual Meeting

  23. Ogunniyi IO et al (2009) Chemical composition and liberation characterization of printed circuit board comminution fines for beneficiation investigations. Waste Manag 29(7):2140–2146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We offer our special thanks to the Stein Injection Technology GmbH for providing the injection equipment and the knowhow. This project is promoted by the federal Ministry for Economy and Energy according to a decision of the German federal parliament.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus Borowski.

Additional information

The contributing editor for this article was Hiromichi Takebe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borowski, N., Trentmann, A., Brinkmann, F. et al. Metallurgical Effects of Introducing Powdered WEEE to a Molten Slag Bath. J. Sustain. Metall. 4, 233–250 (2018). https://doi.org/10.1007/s40831-018-0159-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-018-0159-3

Keywords

Navigation