Skip to main content
Log in

Alkali Activation of Ladle Slag from Steel-Making Process

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Ladle slag, currently an under-utilized crystalline metallurgical residue, was studied for use as a precursor for alkali activation. An activating solution containing sodium silicate and potassium hydroxide was used in activating the slag with varying compositional ratios in order to optimize the compressive strength. Ladle slag is commonly regarded as having limited reaction with alkalis, and in previous studies, it has been therefore mixed with reactive precursors, such as metakaolin. However, based on our results, ladle slag shows potential as a sole precursor for alkali-activated binders. X-ray diffractometry reveals that the major minerals in the ladle slag were identified to be γ-dicalcium silicate and mayenite. After alkali activation, the major reaction product was a silicate hydrate according to DRIFT analysis–sodium-substituted calcium aluminosilicate hydrate gel, C–(N)–A–S–H. XRD analysis supports the hypothesis by revealing an amorphous “halo” in the alkali-activated slag. The unconfined compressive strength of the optimized alkali-activated ladle slag paste specimen was 65 MPa at 28 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Euroslag (2012). http://www.euroslag.com/products/statistics/2012/. Accessed 8 Mar 2016

  2. Serjun VZ, Mirtič B, Mladenovič A (2013) Evaluation of ladle slag as a potential material for building and civil engineering. Mater Tehnol 47:543–550

    CAS  Google Scholar 

  3. Tracz T, Hager I, Sideris KK, et al (2015) In: 7th Scientific-technical conference on material problems in civil engineering MATBUD’2015Production of durable self-compacting concrete using ladle furnace slag (LFS) as filler material. Procedia Engineering, vol 108, pp 592–597. doi: 10.1016/j.proeng.2015.06.184

  4. Manso JM, Rodriguez Á, Aragón Á, Gonzalez JJ (2011) The durability of masonry mortars made with ladle furnace slag. Constr Build Mater 25:3508–3519. doi:10.1016/j.conbuildmat.2011.03.044

    Article  Google Scholar 

  5. Manso JM, Losañez M, Polanco JA, Gonzalez JJ (2005) Ladle Furnace Slag in Construction. J Mater Civ Eng 17:513–518. doi:10.1061/(ASCE)0899-1561(2005)17:5(513)

    Article  CAS  Google Scholar 

  6. Andreas L, Diener S, Lagerkvist A (2014) Steel slags in a landfill top cover – Experiences from a full-scale experiment. Waste Manag 34:692–701. doi:10.1016/j.wasman.2013.12.003

    Article  CAS  Google Scholar 

  7. Koizumi S, Miki T, Nagasaka T (2015) Enrichment of phosphorus oxide in steelmaking slag by utilizing capillary action. J Sustain Metall. doi:10.1007/s40831-015-0035-3

    Google Scholar 

  8. Buchwald A, Hilbig H, Kaps C (2007) Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition. J Mater Sci 42:3024–3032. doi:10.1007/s10853-006-0525-6

    Article  CAS  Google Scholar 

  9. Guerrieri M, Sanjayan J, Collins F (2009) Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures. Mater Struct 43:765–773. doi:10.1617/s11527-009-9546-3

    Article  Google Scholar 

  10. Guerrieri M, Sanjayan JG (2010) Behavior of combined fly ash/slag-based geopolymers when exposed to high temperatures. Fire Mater 34:163–175. doi:10.1002/fam.1014

    CAS  Google Scholar 

  11. Provis JL, Bernal SA (2014) Geopolymers and related alkali-activated materials. Annu Rev Mater Res 44:299–327. doi:10.1146/annurev-matsci-070813-113515

    Article  CAS  Google Scholar 

  12. Pacheco-Torgal F, Labrincha J, Leonelli C et al (2014) Handbook of alkali-activated cements, mortars and concretes. Elsevier, Cambridge

    Google Scholar 

  13. Yip CK, Lukey GC, Provis JL, van Deventer JSJ (2008) Effect of calcium silicate sources on geopolymerisation. Cem Concr Res 38:554–564. doi:10.1016/j.cemconres.2007.11.001

    Article  CAS  Google Scholar 

  14. Myers RJ, Bernal SA, San Nicolas R, Provis JL (2013) Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir 29:5294–5306. doi:10.1021/la4000473

    Article  CAS  Google Scholar 

  15. Provis JL (2013) Geopolymers and other alkali activated materials: why, how, and what? Mater Struct 47:11–25. doi:10.1617/s11527-013-0211-5

    Article  Google Scholar 

  16. Chi M (2012) Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete. Constr Build Mater 35:240–245. doi:10.1016/j.conbuildmat.2012.04.005

    Article  Google Scholar 

  17. Kriskova L, Pontikes Y, Zhang F et al (2014) Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium silicate. Cem Concr Res 55:59–68. doi:10.1016/j.cemconres.2013.10.004

    Article  CAS  Google Scholar 

  18. Salman M, Cizer Ö, Pontikes Y et al (2015) Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions. J Hazard Mater 286:211–219. doi:10.1016/j.jhazmat.2014.12.046

    Article  CAS  Google Scholar 

  19. Salman M, Cizer Ö, Pontikes Y et al (2014) Effect of curing temperatures on the alkali activation of crystalline continuous casting stainless steel slag. Constr Build Mater 71:308–316. doi:10.1016/j.conbuildmat.2014.08.067

    Article  Google Scholar 

  20. Kriskova L, Pontikes Y, Cizer Ö et al (2012) Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cem Concr Res 42:778–788. doi:10.1016/j.cemconres.2012.02.016

    Article  CAS  Google Scholar 

  21. Salman M, Cizer Ö, Pontikes Y et al (2015) Alkali activation of AOD stainless steel slag under steam curing conditions. J Am Ceram Soc 98:3062–3074. doi:10.1111/jace.13776

    Article  CAS  Google Scholar 

  22. Bignozzi MC, Manzi S, Lancellotti I et al (2013) Mix-design and characterization of alkali activated materials based on metakaolin and ladle slag. Appl Clay Sci 73:78–85. doi:10.1016/j.clay.2012.09.015

    Article  CAS  Google Scholar 

  23. Lancellotti I, Ponzoni C, Bignozzi MC et al (2014) Incinerator bottom ash and ladle slag for geopolymers preparation. Waste Biomass Valoriz 5:393–401. doi:10.1007/s12649-014-9299-2

    Article  CAS  Google Scholar 

  24. Natali Murri A, Rickard WDA, Bignozzi MC, Van Riessen A (2013) High temperature behaviour of ambient cured alkali-activated materials based on ladle slag. Cem Concr Res 43:51–61. doi:10.1016/j.cemconres.2012.09.011

    Article  CAS  Google Scholar 

  25. Natali A, Manzi S, Bignozzi MC (2011) Novel fiber-reinforced composite materials based on sustainable geopolymer matrix. Procedia Eng 21:1124–1131. doi:10.1016/j.proeng.2011.11.2120

    Article  CAS  Google Scholar 

  26. Bougara A, Lynsdale C, Ezziane K (2009) Activation of Algerian slag in mortars. Constr Build Mater 23:542–547. doi:10.1016/j.conbuildmat.2007.10.012

    Article  Google Scholar 

  27. Torgal FP, Jalali S (2011) Eco-efficient construction and building materials. Springer, London

    Book  Google Scholar 

  28. SFS Online (2009) SFS 5513 - Brick Tile Testing (Finnish standard). https://online.sfs.fi/fi/index/tuotteet/SFS/SFS/ID2/5/119637.html.stx. Accessed 22 Dec 2015

  29. Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A (2014) An overview of the chemistry of alkali-activated cement-based binders. In: Handbook of Alkali-activated cements, mortars and concretes, pp 19–47

  30. Majumbar AJ, Singh B, Edmonds RN (1989) Hydration of mixtures of C12A7 and granulated blastfurnace slag. Cem Concr Res 19:848–856. doi:10.1016/0008-8846(89)90097-5

    Article  Google Scholar 

  31. Adolfsson D, Robinson R, Engström F, Björkman B (2011) Influence of mineralogy on the hydraulic properties of ladle slag. Cem Concr Res 41:865–871. doi:10.1016/j.cemconres.2011.04.003

    Article  CAS  Google Scholar 

  32. Collins F, Sanjayan JG (1999) Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate. Cem Concr Res 29:607–610. doi:10.1016/S0008-8846(98)00203-8

    Article  CAS  Google Scholar 

  33. Shi C, Roy D, Krivenko P (2006) Alkali-activated cements and concretes. CRC Press, Boca Raton

    Book  Google Scholar 

  34. Nikolić I, Drinčić A, Djurović D et al (2016) Kinetics of electric arc furnace slag leaching in alkaline solutions. Constr Build Mater 108:1–9. doi:10.1016/j.conbuildmat.2016.01.038

    Article  Google Scholar 

  35. Yu P, Kirkpatrick RJ, Poe B et al (1999) Structure of Calcium Silicate Hydrate (C-S-H): near-, Mid-, and Far-Infrared Spectroscopy. J Am Ceram Soc 82:742–748. doi:10.1111/j.1151-2916.1999.tb01826.x

    Article  CAS  Google Scholar 

  36. Lecomte I, Henrist C, Liégeois M et al (2006) (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J Eur Ceram Soc 26:3789–3797. doi:10.1016/j.jeurceramsoc.2005.12.021

    Article  CAS  Google Scholar 

  37. Zhang Z, Wang H, Provis JL et al (2012) Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Thermochim Acta 539:23–33

    Article  CAS  Google Scholar 

  38. Gao X, Yu QL, Brouwers HJH (2015) Characterization of alkali activated slag–fly ash blends containing nano-silica. Constr Build Mater 98:397–406. doi:10.1016/j.conbuildmat.2015.08.086

    Article  Google Scholar 

  39. Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, Macphee DE (2011) Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem Concr Res 41:923–931. doi:10.1016/j.cemconres.2011.05.006

    Article  CAS  Google Scholar 

  40. Bernal SA, Provis JL, Rose V, Mejía de Gutierrez R (2011) Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem Concr Compos 33:46–54. doi:10.1016/j.cemconcomp.2010.09.004

    Article  CAS  Google Scholar 

  41. Kupaei RH, Alengaram UJ, Jumaat MZ et al (2014) The effect of different parameters on the development of compressive strength of oil palm shell geopolymer concrete. Sci World J Sci World J 2014:e898536. doi:10.1155/2014/898536

    Google Scholar 

  42. Qureshi MN, Ghosh S (2013) Effect of Alkali Content on Strength and Microstructure of GGBFS Paste. Glob J Res Eng 13

  43. Zhang Z, Yang T, Wang H (2014) The effect of efflorescence on the mechanical properties of fly ash-based geopolymer binders. In: 23rd Australas conference on the mechanics of structures and materials ACMSM23, pp 107–112

  44. Posi P, Lertnimoolchai S, Sata V, Chindaprasirt P (2013) Pressed lightweight concrete containing calcined diatomite aggregate. Constr Build Mater 47:896–901. doi:10.1016/j.conbuildmat.2013.05.094

    Article  Google Scholar 

  45. Jud Sierra E, Miller SA, Sakulich AR et al (2010) Pozzolanic activity of diatomaceous earth. J Am Ceram Soc 93:3406–3410. doi:10.1111/j.1551-2916.2010.03886.x

    Article  Google Scholar 

  46. Qureshi MN, Ghosh S (2014) Effect of silicate content on the properties of Alkali-activated blast furnace slag paste. Arab J Sci Eng 39:5905–5916. doi:10.1007/s13369-014-1172-x

    Article  CAS  Google Scholar 

  47. Petrović DV, Mitrović ČB, Trišovic NR, Golubović ZZ (2011) On the particles size distributions of diatomaceous earth and perlite granulations. Stroj Vestn J Mech Eng 57:843–850. doi:10.5545/sv-jme.2010.050

    Article  Google Scholar 

  48. Pimraksa K, Chindaprasirt P (2009) Lightweight bricks made of diatomaceous earth, lime and gypsum. Ceram Int 35:471–478. doi:10.1016/j.ceramint.2008.01.013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Regional Development Fund (Project Code: A70189) and the following Finnish companies: Ekokem Oy, SSAB Europe Oy, Stora Enso Oyj, Pohjolan Voima Oy, and Oulun Energia. The contributions of Jarno Karvonen and Jani Österlund to the laboratory analyses are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirja Illikainen.

Additional information

The contributing editor for this article was Yiannis Pontikes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adesanya, E., Ohenoja, K., Kinnunen, P. et al. Alkali Activation of Ladle Slag from Steel-Making Process. J. Sustain. Metall. 3, 300–310 (2017). https://doi.org/10.1007/s40831-016-0089-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-016-0089-x

Keywords

Navigation