Skip to main content
Log in

Shape Memory Materials Analysis and Research Tool (SM2ART): Finding Data Anomalies and Trends

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Typically, the first step in alloy selection and material production is to use handbooks, databases, or other materials guides to down-select to a specific composition and processing method for the desired application. This is true for conventional materials, such as steels, aluminums, and polymers, but until recently, no similar data source existed for shape memory materials (SMMs). There is no shortage of information in the SMM field; with over 90 years of research in the form of peer-reviewed articles, papers, and published data from companies; however, these data have not been accessible in a single location. This has posed many difficulties for the research and development of SMMs and has caused the field to move slowly. To remedy this, a web-based comprehensive repository known as the Shape Memory Materials Analysis and Research Tool (SM2ART) database has been developed. SM2ART provides unrestricted access to data from thousands of peer-reviewed articles and published data. These data are organized in a 2D and 3D visualization platform and provides viewers insight into shape memory alloys (SMAs), superelastic alloys, magnetic alloys, shape memory polymers (SMPs), and shape memory ceramics (SMCs). The work presented here provides a summary of the data available within the SM2ART database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Takagi T, Sutou Y, Kainuma R, Yamauchi K, Ishida K (2006) Effect of prestrain on martensitic transformation in a Ti46.4Ni47.6Nb6.0 superelastic alloy and its application to medical stents. J Biomed Mater Res B 76(1):179–183

    CAS  Google Scholar 

  2. Tian Y, Yu Z, Ong CYA, Kent D, Wang G (2015) Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents. J Mecha Behav Biomed Mater 45:132–141

    CAS  Google Scholar 

  3. McCoy B (1996) Comparison of compositions and differential scanning calorimetric analyses of the new copper-Ni-Ti wires with existing Ni-Ti orthodontic wires [Thesis], The Ohio State University, p 111

  4. Gil F, Planell J (1999) Effect of copper addition on the superelastic behavior of Ni-Ti shape memory alloys for orthodontic applications. J Biomed Mater Res 48(5):682–688

    CAS  Google Scholar 

  5. Mitose K, Ueki T (1999) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material, U.S. Patent No. 5,885,381.

  6. Iijima M, Ohno H, Kawashima I, Endo K, Mizoguchi I (2002) Mechanical behavior at different temperatures and stresses for superelastic nickel–titanium orthodontic wires having different transformation temperatures. Dent Mater 18(1):88–93

    CAS  Google Scholar 

  7. Suzuki A, Kanetaka H, Shimizu Y, Tomizuka R, Hosoda H, Miyazaki S, Okuno O, Igarashi K, Mitani H (2006) Orthodontic buccal tooth movement by nickel-free titanium-based shape memory and superelastic alloy wire. Angle Orthod 76(6):1041–1046

    Google Scholar 

  8. Biermann MC, Berzins DW, Bradley TG (2007) Thermal analysis of as-received and clinically retrieved copper-nickel-titanium orthodontic archwires. Angle Orthod 77(3):499–503

    Google Scholar 

  9. Kanetaka H, Shimizu Y, Hosoda H, Tomizuka R, Suzuki A, Urayama S, Inamura T, Miyazaki S, Takano-Yamamoto T (2007) Orthodontic tooth movement in rats using Ni-free Ti-based shape memory alloy wire. Mater Trans 48(3):367–372

    CAS  Google Scholar 

  10. Pun DK, Berzins DW (2008) Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel-titanium-based orthodontic wires at various temperatures. Dent Mater 24(2):221–227

    CAS  Google Scholar 

  11. Wang QY, Zheng YF (2008) The electrochemical behavior and surface analysis of Ti50Ni47.2Co2.8 alloy for orthodontic use. Dent Mater 24(9):1207–1211

    Google Scholar 

  12. Zheng YF, Wang QY, Li L (2008) The electrochemical behavior and surface analysis of Ti49.6Ni45.1Cu5Cr0.3 alloy for orthodontic usage. J Biomed Mater Res B 86(2):335–340

    Google Scholar 

  13. Phukaoluan A, Khantachawana A, Kaewtatip P, Dechkunakorn S, Anuwongnukroh N, Santiwong P, Kajornchaiyakul J (2011) Property improvement of TiNi by Cu addition for orthodontics applications. Appl Mech Mater 87:95–100

    CAS  Google Scholar 

  14. Arciniegas M, Manero J, Espinar E, Llamas J, Barrera J, Gil F (2013) New Ni-free superelastic alloy for orthodontic applications. Mater Sci Eng C 33(6):3325–3328

    CAS  Google Scholar 

  15. Phukaoluan A, Dechkunakorn S, Anuwongnukroh N, Khantachawana A, Kaewtatip P, Kajornchaiyakul J, Wichai W (2017) Loading and unloading forces following addition of 5% Cu in nickel-titanium alloy used for orthodontics, key engineering materials. Trans Tech Publ, pp 161–166

    Google Scholar 

  16. Barros CDDR, Gomes JADCP (2021) Influence of Cu addition and autoclave sterilization on corrosion resistance and biocompatibility of NiTi for orthodontics applications. Mater Res. https://doi.org/10.1590/1980-5373-mr-2020-0369

    Article  Google Scholar 

  17. Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng G 221(4):535–552

    CAS  Google Scholar 

  18. Bovesecchi G, Corasaniti S, Costanza G, Tata ME (2019) A novel self-deployable solar sail system activated by shape memory alloys. Aerospace 6(7):78

    Google Scholar 

  19. Costanza G, Tata ME (2020) Shape memory alloys for aerospace, recent developments, and new applications: a short review. Materials 13(8):1856

    CAS  Google Scholar 

  20. Vertegaal CJC, Bentum MJ, Pourshaghaghi HR (2021) Using shape memory alloy for cubesat antenna design in space. In: 2021 15th European conference on antennas and propagation (EuCAP), pp 1–5

  21. Monroe J, McAllister J, Content D, Zgarba J (2020) Negative thermal expansion ALLVAR alloys for smaller optics. SPIE Photonics West, San Francisco, California, February 4–6 2020

  22. Monroe J, East M, Hull T (2021) ALLVAR alloy athermalization: a novel and cost-effective alternative for small to moderate sized space telescopes, SPIE Photonics West, Bellingham, Washington, March 6–11 2021

  23. Clarke AJ, Field RD, McCabe RJ, Cady CM, Hackenberg RE, Thoma DJ (2008) EBSD and FIB/TEM examination of shape memory effect deformation structures in U–14at.% Nb. Acta Mater 56(11):2638–2648

    CAS  Google Scholar 

  24. Clarke AJ, Field RD, Dickerson PO, McCabe RJ, Swadener JG, Hackenberg RE, Thoma DJ (2009) A microcompression study of shape-memory deformation in U–13at.% Nb. Scr Mater 60(10):890–892

    CAS  Google Scholar 

  25. Rashidi S, Ehsani MH, Shakouri M, Karimi N (2021) Potentials of magnetic shape memory alloys for energy harvesting. J Magn Magn Mater 537:168112

    CAS  Google Scholar 

  26. Kohl M, Joseph J, Seigner L (2022) Energy harvesting using magnetic shape memory alloys. In: Olabi A-G (ed) Encyclopedia of smart materials. Elsevier, Oxford, pp 96–103

    Google Scholar 

  27. Zhang X, Qian M (2022) Application of magnetic shape memory alloys. In: Zhang X, Qian M (eds) Magnetic shape memory alloys: preparation, martensitic transformation and properties. Springer, Singapore, pp 255–268

    Google Scholar 

  28. Small W, Metzger MF, Wilson TS, Maitland DJ (2005) Laser-activated shape memory polymer microactuator for thrombus removal following ischemic stroke: preliminary in vitro analysis. IEEE J Sel Top Quantum Electron 11(4):892–901

    CAS  Google Scholar 

  29. Maitland DJ, Metzger MF, Schumann D, Lee A, Wilson TS (2002) Photothermal properties of shape memory polymer micro-actuators for treating stroke*. Lasers Surg Med 30(1):1–11

    Google Scholar 

  30. Chen M-C, Chang Y, Liu C-T, Lai W-Y, Peng S-F, Hung Y-W, Tsai H-W, Sung H-W (2009) The characteristics and in vivo suppression of neointimal formation with sirolimus-eluting polymeric stents. Biomaterials 30(1):79–88

    CAS  Google Scholar 

  31. Baer GM, Small W, Wilson TS, Benett WJ, Matthews DL, Hartman J, Maitland DJ (2007) Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent. Biomed Eng Online 6(1):43

    Google Scholar 

  32. Jung YC, Cho JW (2010) Application of shape memory polyurethane in orthodontic. J Mater Sci—Mater Med 21(10):2881–2886

    CAS  Google Scholar 

  33. Nakasima A, Hu JR, Ichinose M, Shimada H (1991) Potential application of shape memory plastic as elastic material in clinical orthodontics. Eur J Orthod 13(3):179–186

    CAS  Google Scholar 

  34. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573):1673–1676

    Google Scholar 

  35. Ortega JM, Small W, Wilson TS, Benett WJ, Loge JM, Maitland DJ (2007) A shape memory polymer dialysis needle adapter for the reduction of hemodynamic stress within arteriovenous grafts. IEEE Trans Biomed Eng 54(9):1722–1724

    Google Scholar 

  36. Gök MO, Bilir MZ, Gürcüm BH (2015) Shape-memory applications in textile design. Procedia Soc Behav Sci 195:2160–2169

    Google Scholar 

  37. Hu J, Chen S (2010) A review of actively moving polymers in textile applications. J Mater Chem 20(17):3346–3355

    CAS  Google Scholar 

  38. Hu J, Meng H, Li G, Ibekwe SI (2012) A review of stimuli-responsive polymers for smart textile applications. Smart Mater Struct 21(5):053001

    Google Scholar 

  39. Jeong HM, Ahn BK, Cho SM, Kim BK (2000) Water vapor permeability of shape memory polyurethane with amorphous reversible phase. J Polym Sci B 38(23):3009–3017

    CAS  Google Scholar 

  40. Ding XM, Hu JL, Tao XM, Wang ZF, Wang B (2005) Free volume and water vapor transport properties of temperature-sensitive polyurethanes. J Polym Sci B 43(14):1865–1872

    CAS  Google Scholar 

  41. Yin WL, Sun QJ, Zhang B, Liu JC, Leng JS (2008) Seamless morphing wing with SMP skin. Adv Mater Res 47–50:97–100

    Google Scholar 

  42. Barrett R, Taylor R, Keller P, Codell D, Adams L (2007) Deployable reflectors for small satellites. Small Satellite Conference, Logan, Utah, August 4–9

  43. Barrett R, Taylor R, Keller P, Lake M, Stern T, Freebury G, Beidleman N (2007) Design of a solar array to meet the standard bus specification for operation responsive space. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 2332

  44. Yin W, Liu J, Leng J (2009) Deformation analysis of shape memory polymer for morphing wing skin under airflow. Front Mech Eng China 4(4):447

    Google Scholar 

  45. Zhang R, Guo X, Liu Y, Leng J (2014) Theoretical analysis and experiments of a space deployable truss structure. Compos Struct 112:226–230

    Google Scholar 

  46. Lan X, Liu Y, Lv H, Wang X, Leng J, Du S (2009) Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Mater Struct 18(2):024002

    Google Scholar 

  47. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33

    Google Scholar 

  48. Liu Y, Du H, Liu L, Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23(2):023001

    CAS  Google Scholar 

  49. Uchino K (2016) Antiferroelectric shape memory ceramics. Actuators 5(2):11

    Google Scholar 

  50. Quade DJ (2017) Investigation of interfacial bonding between shape memory alloys and polymer matrix composites. University of Akron, Orrville

    Google Scholar 

  51. Caltagirone PE (2021) Improvements of fiber reinforced thermoplastic composite bonds: thick joint failure model, shape memory alloy reinforcements, and in-situ x-ray characterizations, PhD thesis, Colorado School of Mines, Golden, Colorado

  52. Soto-Parra D, Zhang X, Cao S, Vives E, Salje EKH, Planes A (2015) Avalanches in compressed Ti-Ni shape-memory porous alloys: an acoustic emission study. Phys Rev E 91(6):060401

    Google Scholar 

  53. Tang W, Cederström J, Sandström R (1991) Property database for the development of shape memory alloy applications. J Phys IV Proc. https://doi.org/10.1051/jp4:1991419

    Article  Google Scholar 

  54. Smith R, Oates B (2022) Smart materials database. https://rsmith.math.ncsu.edu/Smart_Materials_Database/. Accessed 22 Nov 2022

  55. Shape memory alloys. In: Davis JR (ed) (1998) Metals handbook desk edition, ASM International

  56. Benafan O (2022) Shape memory materials database. https://shapememory.grc.nasa.gov/. Accessed 22 Nov 2022

  57. Benafan O, Bigelow GS, Young AW (2020) Shape memory materials database tool—a compendium of functional data for shape memory materials. Adv Eng Mater 22(7):1901370

    CAS  Google Scholar 

  58. Honrao SJ, Benafan O, Lawson JW (2022) Data-driven study of shape memory behavior of multi-component Ni–Ti alloys in large compositional and processing space. Shape Mem Superelast 9:144–155

    Google Scholar 

  59. Krishnan R, Brown L (1973) Martensitic transformations in β Ag-Cd alloys. Metall Trans 4(4):1017–1022

    Google Scholar 

  60. Miura S, Horn F, Nakanishi N (1979) Pseudoelastic behaviour associated with thermoelastic martensitic transformation in an Au52.5xAgxCd47.5 pseudobinary alloy. Philos Mag A 40(5):611–624

    CAS  Google Scholar 

  61. Nagasawa A, Tatsumi A (1988) Phase transformation in the quenched Ag3Al beta phase alloy. Trans Jpn Inst Met 29(8):625–633

    CAS  Google Scholar 

  62. Prasad K, Bansal C (1986) Resistivity and thermoelectric power measurements on AgCd shape memory alloys. Phys Status Solidi A 98(2):453–464

    CAS  Google Scholar 

  63. Scherrer P, Rubini S, Dimitropoulos C, Borsa F (1995) Thermal cycling and growth of the martensite studied by NMR in an Ag-Cd alloy. Le Journal de Physique IV. https://doi.org/10.1051/jp4:1995268

    Article  Google Scholar 

  64. Takezawa K, Hoshi H, Marukawa K (1999) Relation between long-range ordering and martensitic transformation temperature in Ag alloys. Mater Sci Eng A 273:564–567

    Google Scholar 

  65. Takezawa K, Sato S, Minato K, Maruyama S, Marukawa K (1992) Martensitic and bainitic transformations in Ag–Zn alloys. Mater Trans JIM 33(3):294–301

    CAS  Google Scholar 

  66. Tong H, Wayman C (1973) Marmem effect in β’AgCd alloys. Scr Metall 7(2):215–221

    CAS  Google Scholar 

  67. Olander A (1932) An electrochemical investigation of solid cadmium-gold alloys. J Am Chem Soc 54:3819–3833

    CAS  Google Scholar 

  68. Battezzati L, Barbero S, Belotti M, Riontino G (2003) Resistometric and calorimetric analysis of phase transformations in AuCu alloys. Z Met 94(4):449–452

    CAS  Google Scholar 

  69. Cashion JD, Chadwick J, Coyle CM, Finlayson TR (2003) The aging effect in Au-Cd alloys: a Mössbauer spectroscopy study. Journal de Physique IV (Proceedings) EDP sciences 112:1087–1090

    CAS  Google Scholar 

  70. Emura Y, Ohba T, Otsuka K (1992) Crystal structure of ζ2’Martensite in Au-49.5 at% Cd alloy. MRS Online Proc Libr Arch. https://doi.org/10.1557/PROC-246-73

    Article  Google Scholar 

  71. Ishibashi H, Kogachi M, Ohba T, Ren X, Otsuka K (2002) Vacancy migration and long-range ordering due to ageing in AuCd shape memory alloys. Mater Sci Eng A 329:568–572

    Google Scholar 

  72. Kogachi M, Ishibashi H, Ohba T, Ren X, Otsuka K (2000) Examination of vacancy migration and long-range ordering due to ageing in Au-49.8Cd shape memory alloy. Scr Mater 42(9):841–847

    CAS  Google Scholar 

  73. Otsuka K, Ren X, Murakami Y, Kawano T, Ishii T, Ohba T (1999) Composition dependence of the rubber-like behavior in ζ2′-martensite of AuCd alloys. Mater Sci Eng A 273:558–563

    Google Scholar 

  74. Xue D, Zhou Y, Ding X, Otsuka K, Sun J, Ren X (2011) Martensite aging effects on the dynamic properties of Au–Cd shape memory alloys: characteristics and modeling. Acta Mater 59(12):4999–5011

    CAS  Google Scholar 

  75. Miura S, Maeda S, Nakanishi N (1974) Pseudoelasticity in Au-Cu-Zn thermoelastic martensite. Philos Mag 30(3):565–581

    CAS  Google Scholar 

  76. Sakamoto H, Otsuka K, Shimizu K (1977) Rubber-like behavior in a Cu-Al-Ni alloy. Scr Metall 11(7):607–611

    CAS  Google Scholar 

  77. Abu-Arab A, Ahlers M (1988) The stabilization of martensite in Cu-Zn-Al alloys. Acta Metall 36(9):2627–2638

    Google Scholar 

  78. Battezzati L, Belotti M, Brunella V (2001) Calorimetry of ordering and disordering in AuCu alloys. Scr Mater 44(12):2759–2764

    CAS  Google Scholar 

  79. Hennig J, Mari D, Schaller R (2009) Order-disorder phase transition and stress-induced diffusion in Au-Cu. Phys Rev B 79(14):144116

    Google Scholar 

  80. Mašek P, Chmelik F, Šıma V, Brinck A, Neuhäuser H (1999) Microstructure processes induced by phase transitions in a CuAu alloy as studied by acoustic emission and optical cinematography. Acta Mater 47(2):427–434

    Google Scholar 

  81. Miranda G, Silva F, Soares D (2013) Solid state transformations and equilibrium crystal structures of an Au-Cu alloy with shape memory effect. Mater Sci Forum 730–732:859–864

    Google Scholar 

  82. Miura S, Okuno H, Ohkubo K, Mohri T (2004) In-situ observation of surface relief formation and disappearance during order-disorder transition of equi-atomic CuAu alloy using laser scanning confocal microscopy. MRS Online Proc Libr Arch. https://doi.org/10.1557/PROC-842-S4.4

    Article  Google Scholar 

  83. Šachl J, Šíma V (2008) A study of order-disorder transformation in CuAu alloy under an external load. Kovove Mater 46:277–283

    Google Scholar 

  84. Šachl J, Šíma V, Pfeiler W (2004) Reversible and irreversible changes of surface morphology by order–disorder transition in CuAu alloy. J Alloys Compd 378(1):274–278

    Google Scholar 

  85. Volkov AY, Antonov B, Patselov A (2010) Effect of external force fields on the domain structure of equiatomic CuAu alloy. Phys Met Metallogr 110(3):250–259

    Google Scholar 

  86. Volkov AY, Kazantsev V (2012) Impact of the initial state on the structure and properties of the ordered CuAu alloy. Phys Met Metallogr 113(1):62–71

    Google Scholar 

  87. Darling T, Chu F, Migliori A, Thoma D, Lopez M, Lashley J, Lang B, Boerio-Goates J, Woodfiel B (2002) Elastic and thermodynamic properties of the shape-memory alloy AuZn. Philos Mag B 82(7):825–837

    CAS  Google Scholar 

  88. Lashley JC, Ledbetter H, Darling TW, Saxena A, Malinowski A, Hundley MF, Smith JL, Thoma DJ (2006) Free-energy density of the shape-memory alloy AuZn. Mater Trans 47(3):587–593

    CAS  Google Scholar 

  89. Lashley JC, Shapiro SM, Winn BL, Opeil CP, Manley ME, Alatas A, Ratcliff W, Park T, Fisher RA, Mihaila B, Riseborough P, Salje EKH, Smith JL (2008) Observation of a continuous phase transition in a shape-memory alloy. Phys Rev Lett 101(13):135703

    CAS  Google Scholar 

  90. McDonald RD, Goddard PA, Lashley J, Harrison N, Mielke CH, Singleton J, Harima H, Suzuki M-T (2006) High magnetic field studies of the shape memory alloy AuZn. J Phys Chem Solids 67(9):2100–2105

    CAS  Google Scholar 

  91. Svitelskiy O, Suslov A, Singleton J, Lashley JC (2006) Ultrasonic probe of the AuZn fermi surface. In: AIP conference proceedings, AIP, pp 1319–1320

  92. Winn B, Shapiro S, Lashley JC, Opeil C, Ratcliff W (2010) Structural phase transition in AuZn alloys. J Phys: Conf Ser 251:012027

    CAS  Google Scholar 

  93. Giordana MF, Muñoz-Vásquez N, Garro-González M, Esquivel M, Zelaya E (2015) Study of the formation of Cu-24at.% Al by reactive milling. Procedia Mater Sci 9:262–270

    CAS  Google Scholar 

  94. Silva R, Machado E, Adorno A, Magdalena A, Carvalho T (2012) Completeness of β-phase decomposition reaction in Cu–Al–Ag alloys. J Therm Anal Calorim 109(2):927–931

    CAS  Google Scholar 

  95. Pascal NS, Giordana M, Napolitano F, Esquivel M, Zelaya E (2017) Thermal stability analysis of Cu-11.8 wt% Al milled samples by TEM and HT-XRD. Adv Powder Technol 28(10):2605–2612

    Google Scholar 

  96. Adorno A, Guerreiro M, Benedetti AV (2001) Isothermal aging kinetics in the Cu–19 at.% Al alloy. J Alloys Compd 315(1–2):150–1578

    CAS  Google Scholar 

  97. Cesari E, Kustov S, Golyandin S, Sapozhnikov K, Van Humbeeck J (2006) Mobility of point-like defects in Cu–Al martensites. Mater Sci Eng A 438:369–373

    Google Scholar 

  98. Giordana M, Esquivel M, Zelaya E (2015) A detailed study of phase evolution in Cu–16 at.% Al and Cu–30 at.% Al alloys under different types of mechanical alloying processes. Adv Powder Technol 26(2):470–477

    CAS  Google Scholar 

  99. Giordana MF, Muñoz-Vásquez N, Esquivel M, Zelaya E (2017) Analysis of the Cu-Al milling stages through the microstructure evolution studied by TEM and SEM. Metallogr Microstruct Anal 6(2):139–149

    CAS  Google Scholar 

  100. Graczykowski B, Biskupski P, Mroz B, Mielcarek S, Nó M, San Juan J (2009) Elastic properties of Cu–Al–Ni shape memory alloys studied by dynamic mechanical analysis. Smart Mater Struct 19(1):015010

    Google Scholar 

  101. Huang H-Y, Liu J-P, Wang Y, Liu X-F, Xie J-X (2012) Tension–compression asymmetry of stress-induced transformations in martensitic Cu-12 wt.% Al alloys. Mater Lett 79:51–54

    CAS  Google Scholar 

  102. Huang H-Y, Wang Y, Xie J-X (2014) Stress-induced phase transformation characteristics and its effect on the enhanced ductility in continuous columnar-grained polycrystalline Cu–12 wt% Al alloy. Mater Sci Eng A 596:103–111

    CAS  Google Scholar 

  103. Lovey F, Coene W, Van Dyck D, Van Tendeloo G, Van Landuyt J, Amelinckx S (1984) HREM imaging conditions for stacking sequences in 18R martensite of Cu-Al alloys. Ultramicroscopy 15(4):345–356

    CAS  Google Scholar 

  104. Lovey F, Van Tendeloo G, Van Landuyt J, Amelinckx S (1985) High resolution electron microscopy of twin interfaces in 2H and 18R martensites of Cu–Al alloys. Scr Metall 19:1223–1228

    CAS  Google Scholar 

  105. Lovey F, van Tendeloo G, van Landuyt J, Delaey L, Amelinckx S (1984) On the nature of various stacking defects in 18R martensite in Cu-Al alloys A study by high resolution electron microscopy. Phys Status Solidi (A) 86:553–564

    CAS  Google Scholar 

  106. Roulin G, Duval P (1997) Initial stages of ordering obtained by tempering of the disordered martensitic phase of CuAl alloys. Scr Mater 37(1):45–51

    CAS  Google Scholar 

  107. Soliman H, Habib N (2014) Effect of ageing treatment on hardness of Cu-12.5 wt% Al shape memory alloy. Indian J Phys 88(8):803–812

    CAS  Google Scholar 

  108. Tas H, Delaey L, Deruyttere A (1971) Stress induced phase transformations and the shape memory effect in β′1Cu-Al martensite. Scr Metall 5(12):1117–1124

    CAS  Google Scholar 

  109. Tas H, Delaey L, Deruyttere A (1973) The self-accommodating character of the β 1 copper-aluminum martensite. Metall Trans 4(12):2833–2840

    CAS  Google Scholar 

  110. Wang Y, Liao B, Liu J, Chen S, Feng Y, Zhang Y, Zhang R (2012) Effects of deep cryogenic treatment on the solid-state phase transformation of Cu–Al alloy in cooling process. Phase Trans 85(7):650–657

    CAS  Google Scholar 

  111. Zhang G, Sauvage X, Wang J, Gao N, Langdon T (2013) Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion. J Mater Sci 48(13):4613–4619

    CAS  Google Scholar 

  112. Koyama Y, Ukena T, Nittono O (1982) Phase transformations and shape memory effect in indium lead alloys. Trans Jpn Inst Met 23(9):518–529

    Google Scholar 

  113. Lubenets S, Natsik V, Pal-Val L, Pal-Val P, Fomenko L (2002) Kinetics of the low-temperature structural transformation in the In–4.3 at.% Cd solid solution. Low Temp Phys 28(6):465–474

    CAS  Google Scholar 

  114. Lubenets SV, Natsik VD, Pal-Val PP, Pal-Val LN, Fomenko LS (1998) Low-temperature structure transformation in In–Cd solid solutions. Mater Sci Eng A 256(1):1–7

    Google Scholar 

  115. Luo ZP (2012) An overview on the indium-thallium (In–Tl) shape memory alloy nanowires. Metallogr Microstruct Anal 1(6):320–326

    CAS  Google Scholar 

  116. Miura S, Ito M, Nakanishi N (1976) Pseudoelastic behavior and its strain rate dependence in thermoelastic In–Tl martensite. Scr Metall 10(1):87–92

    CAS  Google Scholar 

  117. Pal-Val P, Pal-Val L, Ostapovets A, Vanek P (2008) Low temperature kinetics of In-Cd solid solution decomposition. Solid State Phenom 137:35–42

    CAS  Google Scholar 

  118. Sonu CH, O’Keefe TJ (1994) Characterization of phase transformation behavior in electrolytically produced indium-thallium shape memory alloy films. Mater Charact 33(4):311–319

    CAS  Google Scholar 

  119. Zheng H, Luo Z, Fang D, Phillips FR, Lagoudas DC (2012) Reversible phase transformations in a shape memory alloy In–Tl nanowires observed by in situ transmission electron microscopy. Mater Lett 70:109–112

    CAS  Google Scholar 

  120. Ogawa Y, Ando D, Sutou Y, Somekawa H, Koike J (2017) Martensitic transformation in a β-Type Mg–Sc alloy. Shape Mem Superelast 4(1):167–173

    Google Scholar 

  121. Ando D, Ogawa Y, Suzuki T, Sutou Y, Koike J (2015) Age-hardening effect by phase transformation of high Sc containing Mg alloy. Mater Lett 161:5–8

    CAS  Google Scholar 

  122. Ogawa Y, Ando D, Sutou Y, Koike J (2016) A lightweight shape-memory magnesium alloy. Science 353(6297):368–370

    CAS  Google Scholar 

  123. Ogawa Y, Ando D, Sutou Y, Koike J (2016) Aging effect of Mg-Sc alloy with α+ β two-phase microstructure. Mater Trans 57(7):1119–1123

    CAS  Google Scholar 

  124. Ogawa Y, Ando D, Sutou Y, Koike J (2017) Texture randomization of hexagonal close packed phase through hexagonal close packed/body centered cubic phase transformation in Mg-Sc alloy. Scr Mater 128:27–31

    CAS  Google Scholar 

  125. Ogawa Y, Ando D, Sutou Y, Yoshimi K, Koike J (2016) Determination of α/β phase boundaries and mechanical characterization of Mg-Sc binary alloys. Mater Sci Eng A 670:335–341

    CAS  Google Scholar 

  126. Ogawa Y, Sutou Y, Ando D, Koike J (2018) Aging precipitation kinetics of Mg-Sc alloy with bcc+ hcp two-phase. J Alloys Compd 747:854–860

    CAS  Google Scholar 

  127. Ogawa Y, Sutou Y, Ando D, Koike J, Somekawa H (2019) Ordering of the bcc phase in a Mg-Sc binary alloy by aging treatment. Metall Mater Trans A 50(7):3044–3047

    CAS  Google Scholar 

  128. Yamagishi K, Ogawa Y, Ando D, Sutou Y, Koike J (2019) Room temperature superelasticity in a lightweight shape memory Mg alloy. Scr Mater 168:114–118

    CAS  Google Scholar 

  129. Abhyankar A, D’Santhoshini BA, Kaul S, Nigam A (2008) Effect of site disorder on martensitic transformation in ferromagnetic Ni55Fe20Al25 alloy as inferred from magnetic and magneto-transport measurements. Adv Mater Res 52:77–84

    CAS  Google Scholar 

  130. Chen S, Hsieh S, Lin H, Lin M, Huang J (2008) Electrical discharge machining of a NiAlFe ternary shape memory alloy. J Alloys Compd 464(1–2):446–451

    CAS  Google Scholar 

  131. Jiang C, Sordelet D, Gleeson B (2006) Effects of Pt on the elastic properties of B2 NiAl: a combined first-principles and experimental study. Acta Mater 54(9):2361–2369

    CAS  Google Scholar 

  132. Monastyrsky GE, Ochin P, Odnosum VV, Pasko AY, Kolomytsev VI, Koval Y (2013) Martensitic transformation in Ni-Al-Pt high temperature shape memory alloys. Mater Sci Forum 738–739:506–511

    Google Scholar 

  133. Ozdemir O, Zeytin S, Bindal C (2010) Characterization of NiAl with cobalt produced by combustion synthesis. J Alloys Compd 508(1):216–221

    CAS  Google Scholar 

  134. Pank D, Nathal M, Koss D (1990) Microstructure and mechanical properties of multiphase NiAl-based alloys. J Mater Res 5(5):942–949

    CAS  Google Scholar 

  135. Russell SM, Law CC, Blackburn MJ (1988) The effect of cobalt on martensitic toughening parameters in NiAl. MRS Proc 133:627

    CAS  Google Scholar 

  136. Valiullin AI, Kositsyna II, Kositsyn SV, Kataeva NV (2008) Stabilization of high-temperature shape memory effect in functional Ni–Al–Co martensitic alloys. Mater Sci Eng A 481–482:551–554

    Google Scholar 

  137. Kang H-J, Wu S-K, Wu L-M (2010) Martensitic transformation of Ni64Al34Re2 shape memory alloy. Intermetallics 18(1):123–128

    CAS  Google Scholar 

  138. Sun B, Che X, Lin D, Yang G, Zhou Y (1995) The ductility of La-doped rapidly solidified NiAl. Scr Metall Mater 33(7):1145–1149

    CAS  Google Scholar 

  139. Sordelet D, Besser M, Ott R, Zimmerman B, Porter W, Gleeson B (2007) Isothermal nature of martensite formation in Pt-modified β-NiAl alloys. Acta Mater 55(7):2433–2441

    CAS  Google Scholar 

  140. Kang H-J, Wu S-K, Wu L-M (2011) 3R and 14M martensitic transformations in as-rolled and annealed Ni64Al34.5Re1.5 shape memory alloy. J Alloys Compd 509(5):1619–1625

    CAS  Google Scholar 

  141. Kaul S, Annie D’Santhoshini B, Abhyankar A, Barquin LF, Henry P (2006) Thermoelastic martensitic transformation in ferromagnetic Ni–Fe–Al alloys: effect of site disorder. Appl Phys Lett 89(9):093119

    Google Scholar 

  142. Kim HY, Miyazaki S (2004) Martensitic transformation behavior in Ni–Al and Ni–Al–Re melt-spun ribbons. Scr Mater 50(2):237–241

    CAS  Google Scholar 

  143. Kim S, Kim M, Oh M, Hirano T, Wee D (2003) Phase transformation and microstructure of NiAl/Ni3Al alloys containing Ti. Scr Mater 48(4):443–448

    CAS  Google Scholar 

  144. Chernenko V, Kanth BR, Mukhopadhyay P, Kaul S, Villa E, Gambardella A, Besseghini S (2008) Stress-induced and thermoelastic properties of Ni–Fe–Al melt-spun ribbon. Appl Phys Lett 93(14):141904

    Google Scholar 

  145. Mukhopadhyay PK, Karmakar M, Rajini Kanth B, Kaul SN (2013) Experimental and theoretical investigations of the stress-induced twinning/detwinning in the martensite phase of a FSMA system. J Alloys Compd 577:S119–S122

    CAS  Google Scholar 

  146. Okumura H, Uemura K (2011) Effects of rotation speed on microstructure and transition temperatures in Ni–Fe–Al melt-spun ribbons. Intermetallics 19(12):1996–2001

    CAS  Google Scholar 

  147. Biffi CA, Agresti F, Casati R, Tuissi A (2015) Ni3Ta high temperature shape memory alloys: effect of B addition on the martensitic transformation and microstructure. Mater Today: Proc 2:S813–S816

    Google Scholar 

  148. Firstov G, Koval YN, Van Humbeeck J, Ochin P (2008) Martensitic transformation and shape memory effect in Ni3Ta: a novel high-temperature shape memory alloy. Mater Sci Eng A 481:590–593

    Google Scholar 

  149. Kosorukova T, Firstov G, Noël H, Ivanchenko V (2013) Crystal structure changes in the Ni3Ta intermetallic compound. Chem Metals Alloys 6(3–4):196–199

    Google Scholar 

  150. Rudajevova A (2010) Study of the thermal properties of a Ni3Ta shape memory alloy. Int J Thermophys 31(2):378–387

    CAS  Google Scholar 

  151. Rudajevova A, Pospíšil J (2010) Shape memory behavior of a Ni3Ta alloy pre-deformed in compression. Mater Sci Eng A 527(12):2900–2905

    Google Scholar 

  152. Rudajevova A, Pospíšil J (2011) Influence of anisotropy, the latent heat and the thermal history of alloy on martensitic transformation strain in Ni3Ta single crystal. J Alloys Compd 509(18):5500–5505

    CAS  Google Scholar 

  153. Zhou C, Guo C, Li C, Du Z (2018) Thermodynamic optimization of the Ni–Ta system supported by the key experiments. Thermochim Acta 666:135–147

    CAS  Google Scholar 

  154. Otsuka K, Sawamura T, Shimizu K, Wayman CM (1971) Characteristics of the martensitic transformation in TiNi and the memory effect. Metall Trans 2(9):2583–2588

    CAS  Google Scholar 

  155. Sandrock GD, Hehemann RF (1971) The observation of surface relief during the martensitic transformation in TiNi. Metallography 4(5):451–456

    CAS  Google Scholar 

  156. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678

    CAS  Google Scholar 

  157. Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458

    CAS  Google Scholar 

  158. Pan CH, Wang YB, Pan HY (2015) Development of dynamically artificial flowers driven by shape memory alloy and pulse width modulation. In: 2015 IEEE international workshop on advanced robotics and its social impacts (ARSO), pp 1–6

  159. Active Aliforms, 2023. http://www.holbrookandcompany.com/. Accessed 15 Jan 2023

  160. https://www.lamborghini.com/en-en/news/lamborghini-sians-smart-material-system-how-it-works. Accessed 15 Jan 2023

  161. Stoeckel D (1990) Shape memory actuators for automotive applications. Mater Des 11(6):302–307

    Google Scholar 

  162. Jani JM, Leary M, Subic A (2014) Shape memory alloys in automotive applications. Appl Mech Mater 663:248–253

    Google Scholar 

  163. Chillara VSC, Headings LM, Tsuruta R, Itakura E, Gandhi U, Dapino MJ (2019) Shape memory alloy–actuated prestressed composites with application to morphing automotive fender skirts. J Intell Mater Syst Struct 30(3):479–494

    Google Scholar 

  164. Ishikawa H, Sutou Y, Omori T, Oikawa K, Ishida K, Yoshikawa A, Umetsu R, Kainuma R (2007) Pd–In–Fe shape memory alloy. Appl Phys Lett 90(26):261906

    Google Scholar 

  165. Shen Q, Sun W, Wei Z, Liu J (2019) Highly undercooled Pd59.3In23.2Fe17.5 alloy: shape memory effect, linear superelasticity and elastocaloric property. Scr Mater 160:58–61

    CAS  Google Scholar 

  166. Shen Q, Zhao D, Sun W, Wei Z, Liu J (2018) Microstructure, martensitic transformation and elastocaloric effect in Pd-In-Fe polycrystalline shape memory alloys. Intermetallics 100:27–31

    CAS  Google Scholar 

  167. Chieda Y, Kanomata T, Umetsu RY, Okada H, Nishihara H, Kimura A, Nagasako M, Kainuma R, Ziebeck KRA (2013) Magnetic phase diagram of Heuselr alloys Pd2Mn1+xSn1−x. J Alloys Compd 554:335–339

    CAS  Google Scholar 

  168. Ito T, Kimura Y, Xu X, Han K, Umetsu RY, Omori T, Kainuma R (2019) Martensitic transformation and shape memory effect in Pd50Mn50−xGax alloys. J Alloys Compd 805:379–387

    CAS  Google Scholar 

  169. Kanomata T, Chieda Y, Okada H, Nishihara H, Kimura A, Nagasako M, Umetsu RY, Kainuma R, Ziebeck KRA (2012) Martensitic transition of Mn-rich Pd–Mn–Sn alloy. J Alloys Compd 541:392–395

    CAS  Google Scholar 

  170. Kanomata T, Endo K, Chieda Y, Sugawara T, Obara K, Shishido T, Matsubayashi K, Uwatoko Y, Nishihara H, Umetsu RY, Nagasako M, Kainuma R (2010) Magnetic properties of Mn-rich Pd2MnSn Heusler alloys. J Alloys Compd 505(1):29–33

    CAS  Google Scholar 

  171. Xu X, Okada H, Chieda Y, Aizawa N, Takase D, Nishihara H, Sakon T, Han K, Ito T, Adachi Y, Kihara T, Kainuma R, Kanomata T (2019) Magnetoresistance and thermal transformation arrest in Pd2Mn1.4Sn0.6 Heusler alloys. Materials 12(14):2308

    CAS  Google Scholar 

  172. Chastaing K, Denquin A, Portier R, Vermaut P (2008) High-temperature shape memory alloys based on the RuNb system. Mater Sci Eng A 481:702–706

    Google Scholar 

  173. Denquin A, Chastaing K, Vermaut P, Caillard D, Van Humbeeck J, Portier R (2009) Shape recovery in RuNb‐based high temperature shape memory alloys. In: International conference on martensitic transformations (ICOMAT), Wiley, Hoboken, pp 465–471

  174. Dirand L, Nó M, Chastaing K, Denquin A, San Juan J (2012) Internal friction and dynamic modulus in Ru-50Nb ultra-high temperature shape memory alloys. Appl Phys Lett 101(16):161909

    Google Scholar 

  175. Fonda R, Vandermeer R (1997) Crystallography and microstructure of TaRu. Philos Mag A 76(1):119–133

    CAS  Google Scholar 

  176. Gao X, Zheng Y, Cai W, Zhang S, Zhao L (2004) Microstructure, compression property and shape memory effect of equiatomic TaRu high temperature shape memory alloy. J Mater Sci Technol 20(1):97–98

    CAS  Google Scholar 

  177. He Z-R, Zhou J-E, Furuya Y (2003) Effect of Ta content on martensitic transformation behavior of RuTa ultrahigh temperature shape memory alloys. Mater Sci Eng A 348(1):36–40

    Google Scholar 

  178. Gao X, Cai W, Zheng Y, Zhao L (2006) Martensitic transformation and microstructure in Nb–Ru–Fe shape memory alloys. Mater Sci Eng A 438:862–864

    Google Scholar 

  179. Tan C-L, Tian X-H, Cai W (2008) Effect of Fe on martensitic transformation of NbRu high-temperature shape memory alloys: experimental and theoretical study. Chin Phys Lett 25(9):3372

    Google Scholar 

  180. Declairieux C, Denquin A, Ochin P, Portier R, Vermaut P (2011) On the potential of Ti50Au50 compound as a high temperature shape memory alloy. Intermetallics 19(10):1461–1465

    CAS  Google Scholar 

  181. Shim H, Tahara M, Inamura T, Goto K, Yamabe-Mitarai Y, Hosoda H (2015) Oxidation behavior of Au-55 mol% Ti high temperature shape memory alloy during heating in Ar-50 vol% O2 environment. Mater Trans 56(4):600–604

    CAS  Google Scholar 

  182. Kulińska A, Wodniecki P (2014) TiPd shape memory alloy studied by PAC method. Acta Phys Pol A 4(125):936–939

    Google Scholar 

  183. Matsuda M, Yano S, Nishida M (2011) Morphology and crystallography of martensite plate with long period stacking structure in Ti-Pd shape memory alloy. Mater Trans 52(11):2016–2021

    CAS  Google Scholar 

  184. Solomon VC, Nishida M (2003) Morphological and crystallographic aspects of Cl1b-type precipitates nucleated in martensitic and parent phase matrices in Ti-rich Ti-Pd shape memory alloys. J Phys IV France 112:1039–1042

    CAS  Google Scholar 

  185. Yamamuro T, Morizono Y, Honjyo J, Nishida M (2006) Phase equilibrium and martensitic transformation in near equiatomic TiPd alloys. Mater Sci Eng A 438:327–331

    Google Scholar 

  186. Schwartz A, Tanner L (1994) Phase transformations and phase relations in Ti50Pd(50-x)TMx alloys. Chem Mater Sci, Lawrence Livermore National Laboratory, pp 4–6

  187. Schwartz A, Tanner L (1995) Phase transformations and phase relations in the TiPd-TiCr pseudobinary system. 1: Experimental observations. Scr Metall Mater (United States) 32(5):675–680

    CAS  Google Scholar 

  188. Frankel D, Jiang T, Olson GB (2015) Design of a fatigue resistant Ni-free PdTi-base SMA. Mater Today: Proc 2:S801–S804

    Google Scholar 

  189. Chikosha S, Chikwanda HK (2013) TiPt HTSMA produced by spark plasma sintering of elemental powders. In: Materials science forum, vol 738. Trans Tech Publ, Switzerland, pp 579–583

  190. Chikwanda HK, Yamabe-Mitarai Y, Chikosha S (2011) Phase analyses of a TtPt alloy synthesized by spark plasma sintering. In: Materials science forum, vol 675. Trans Tech Publ, Switzerland, pp 1143–1146

  191. Mahlatji M, Chikosha S, Chikwanda HK, Stumpf W, Siyasiya C (2014) Thermal properties of amorphous TiPt alloy produced by mechanical alloying. Adv Mater Res 1019:372–378

    CAS  Google Scholar 

  192. Wadood A, Yamabe-Mitarai Y (2014) TiPt–Co and TiPt–Ru high temperature shape memory alloys. Mater Sci Eng A 601:106–110

    CAS  Google Scholar 

  193. Wadood A, Takahashi M, Takahashi S, Hosoda H, Yamabe-Mitarai Y (2013) High-temperature mechanical and shape memory properties of TiPt–Zr and TiPt–Ru alloys. Mater Sci Eng A 564:34–41

    CAS  Google Scholar 

  194. Yamabe-Mitarai Y, Arockiakumar R, Wadood A, Suresh K, Kitashima T, Hara T, Shimojo M, Tasaki W, Takahashi M, Takahashi S (2015) Ti (Pt, Pd, Au) based high temperature shape memory alloys. Mater Today: Proc 2:S517–S522

    Google Scholar 

  195. Semenova EL, Petyukh V, Kudryavtsev YV (1995) The effect of cobalt and nickel on transformation in TiRh. J Alloys Compd 230(2):115–119

    CAS  Google Scholar 

  196. Wu AS, Brown DW, Clausen B, Elmer JW (2017) The influence of impurities on the crystal structure and mechanical properties of additive manufactured U–14at.% Nb. Scr Mater 130:59–638

    CAS  Google Scholar 

  197. Zhang C, Wang H, Li J, Pang B, Xia Y, Liu Y, Sun G, Zhang X, Fa T, Wang X (2019) The aging-effect-modulated mechanical behavior in U-Nb shape memory alloys through the modified twinning-detwinning process of the α ″phase. Mater Des 162:94–105

    CAS  Google Scholar 

  198. Field R, Brown D, Thoma D (2005) Texture development and deformation mechanisms during uniaxial straining of U-Nb shape-memory alloys. Philos Mag 85(13):1441–1457

    CAS  Google Scholar 

  199. Tupper CN, Brown DW, Field RD, Sisneros TA, Clausen B (2012) Large strain deformation in uranium 6 wt pct niobium. Metall Mater Trans A 43(2):520–530

    CAS  Google Scholar 

  200. Carpenter D, Vandermeer R (1982) An X-ray diffraction study of a martensitic transformation in uranium alloys. Le Journal de Physique Colloques. https://doi.org/10.1051/jphyscol:1982458

    Article  Google Scholar 

  201. Clarke AJ, Field RD, Dickerson PO, McCabe RJ, Swadener JG, Hackenberg R, Thoma D (2009) A microcompression study of shape-memory deformation in U–13 at.% Nb. Scr Mater 60(10):890–892

    CAS  Google Scholar 

  202. Jackson RJ (1970) Reversible martensitic transformations between transition phases of uranium-base niobium alloys, Dow Chemical Co., Golden, Colo. Rocky Flats Div., pp 1–11

  203. Vandermeer R, Ogle J, Northcutt W (1981) A phenomenological study of the shape memory effect in polycrystalline uranium-niobium alloys. Metall Trans A 12(5):733–741

    CAS  Google Scholar 

  204. Gao W, Yi X, Sun B, Meng X, Cai W, Zhao L (2017) Microstructural evolution of martensite during deformation in Zr50Cu50 shape memory alloy. Acta Mater 132:405–415

    CAS  Google Scholar 

  205. Meng X, Gao W, Gao Z, Cai W, Zhao L (2014) Substructure and interface of the superstructure martensite in Zr50Cu50 high temperature shape memory alloy. Mater Lett 117:221–224

    CAS  Google Scholar 

  206. Waterstrat RM, Kuentzler R (2003) Structural instability in the B2-type ordered alloys Zr (Ru, Rh) and Zr (Ru, Pd). J Alloys Compd 359(1–2):133–138

    CAS  Google Scholar 

  207. Filippov V, Yagodin D, Ryltseva A, Estemirova SK, Shunyaev KY (2017) The study of eutectoid decomposition kinetics of Cu50Zr50 alloy. J Therm Anal Calorim 127(1):773–778

    CAS  Google Scholar 

  208. Biffi C, Coduri M, Yoshida H, Soejima Y, Nishida M, Tuissi A (2015) The effect of thermal cycling on the martensitic transformation in equiatomic CuZr shape memory alloy. J Alloys Compd 653:591–595

    CAS  Google Scholar 

  209. Zheng J, Miao Y, Zhang H, Chen S, Lee D, Arróyave R, Vlassak JJ (2018) Phase transformations in equiatomic CuZr shape memory thin films analyzed by differential nanocalorimetry. Acta Mater 159:320–331

    CAS  Google Scholar 

  210. Semenova OL, Kudryavtsev YV, Petyukh VM, Samelyuk AV (2011) Constitution of ZrCo–ZrIr alloys. Powder Metall Met Ceram 49(11):682

    CAS  Google Scholar 

  211. Nishiura T, Yamamuro T, Hashimoto D, Morizono Y, Nishida M (2006) Martensitic transformation and phase equilibrium in near equiatomic Zr–Pd alloys. Mater Sci Eng A 438:852–856

    Google Scholar 

  212. Buehler WJ, Wang FE (1968) A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng 1(1):105–120

    Google Scholar 

  213. Mills SH, Noebe RD, Dellacorte C, Amin-Ahmadi B, Stebner AP (2020) Development of nickel-rich nickel–titanium–hafnium alloys for tribological applications. Shape Mem Superelast 6(3):311–322

    Google Scholar 

  214. Mills SH, Dellacorte C, Noebe RD, Amin-Ahmadi B, Stebner AP (2021) Rolling contact fatigue deformation mechanisms of nickel-rich nickel-titanium-hafnium alloys. Acta Mater 209:116784

    CAS  Google Scholar 

  215. Arditti SJ, Avedikian SZ, Bernstein BS (1971) Articles with polymeric memory and method of constructing same, Google Patents

  216. Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27(14):1168–1172

    CAS  Google Scholar 

  217. Chen S, Hu J, Yuen C-W, Chan L (2009) Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties. Polymer 50(19):4424–4428

    CAS  Google Scholar 

  218. Luo X, Mather PT (2009) Preparation and characterization of shape memory elastomeric composites. Macromolecules 42:7251–7253

    CAS  Google Scholar 

  219. Lee H-F, Yu HH (2011) Study of electroactive shape memory polyurethane–carbon nanotube hybrids. Soft Matter 8:3801–3807

    Google Scholar 

  220. Wu L, Jin C, Sun X (2011) Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromol 12(1):235–241

    CAS  Google Scholar 

  221. Lu XL, Cai W, Gao Z, Tang WJ (2007) Shape memory effects of poly(L-lactide) and its copolymer with poly(ε-caprolactone). Polym Bull 58(2):381–391

    CAS  Google Scholar 

  222. Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22(31):3388–3410

    CAS  Google Scholar 

  223. Xie T (2011) Recent advances in polymer shape memory. Polymer 52(22):4985–5000

    CAS  Google Scholar 

  224. Reyes-Morel PE, Cherng J-S, Chen I-W (1988) Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals: II, pseudoelasticity and shape memory effect. J Am Ceram Soc 71(8):648–657

    CAS  Google Scholar 

  225. Arun D, Chakravarthy P, Arockiakumar R, Santhosh B (2018) Shape memory materials. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

Funding from the NASA Aeronautics Research Mission Directorate (ARMD) Transformational Tools and Technologies (TTT) project is gratefully acknowledged. The authors wish to thank Tyler Kujawa, Daniel D. Kilkenny, Sean A. Bostik, Ron Gould, and Edward A. Jones for their contributions in the software development that made the SM2ART database possible. The authors also thank Joshua Stuckner and Ian S. Howell for their contributions toward the analytical tools in the database, and Glen Bigelow and Darrell Gaydosh for content and reviews of the database. The authors also thank student interns Avery Young and Faith Gantz at the University of North Texas, William Trehern at Texas A&M University, Lina V. Daza at the University of Puerto Rico—Mayaguez, and Julie Foroosh at the University of Central Florida for data collection and extraction for the shape memory alloy section in the database. The authors also thank Hang Yu and Hunter Rauch from the Virginia Technical Institute for their contributions toward the shape memory ceramics section in the database, Kevin A. Cavicchi and Sayan Basak at the University of Akron for their contributions toward the shape memory polymers section in the database, Mohammad Elahinia and Parisa Bayati at the University of Toledo for their contributions toward the superelastic alloys section in the database, Ibrahim Karaman and William Trehern at Texas A&M University for their contributions toward CuAl alloys in the database, and Haluk E. Karaca, Guher P. Toker, and Sayed Ehsan Saghaian at the University of Kentucky for their contributions toward the magnetic shape memory alloy section in the database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Caltagirone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caltagirone, P.E., Benafan, O. Shape Memory Materials Analysis and Research Tool (SM2ART): Finding Data Anomalies and Trends. Shap. Mem. Superelasticity 9, 558–584 (2023). https://doi.org/10.1007/s40830-023-00457-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-023-00457-7

Keywords

Navigation