Skip to main content

Advertisement

Log in

Influence of Deep Cryogenic Treatment on the Pseudoelastic Behavior of the Ni57Ti43 Alloy

  • Technical Article
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

The Ni57Ti43 alloy is a strategy material mainly due to its pseudoelasticity and shape memory properties. In this work, the influence of deep cryogenic treatment on the pseudoelastic behavior of Ni57Ti43 alloy under cyclic thermomechanical loading is investigated. The samples with a uniform gauge section format were initially heat treated by annealing at 500 °C for 10 min. Furthermore, a group of them were subsequently cryogenically treated by immersion in liquid nitrogen (approx. -196 °C), for 12 h. All samples was submitted to uniaxial cyclic tensile test at room temperature, with controlled applied force to result in a stress of 500 MPa and 750 MPa under the frequency of 0.5 Hz, until the stabilization of the stress–strain curve was reached. A reduction in phase transformation start stresses was observed around 17% for direct transformation (austenite to martensite) and 35% for inverse transformation (martensite to austenite). A reduction was observed both in the maximum recoverable deformation and the residual deformation, estimated to be around 40% and 45% lower, respectively. Finally, a decrease of 83.4% in damping was identified. The microstructure analysis showed that the non-treated samples accumulated more martensite than cryogenically treated ones when subjected to cyclic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Leo DJ (2008) Engineering analysis of smart material systems. Wiley, New York

    Google Scholar 

  2. Funakubo H (1987) Shape memory alloys. Gordon and Breach Science Publisher, New York

    Google Scholar 

  3. Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  4. Elahinia MH (2016) Shape memory alloy actuators

  5. Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50:511–678

    Article  CAS  Google Scholar 

  6. Janocha H (2007) Adaptronics and smart structures. Basics, materials, design and applications, 2nd revised. Springer, Berlin

    Google Scholar 

  7. Di Cocco V, Iacoviello F, Natali S (2016) Fatigue microstructural evolution in pseudo elastic NiTi alloy. Procedia Struct Integr 2:1457–1464. https://doi.org/10.1016/j.prostr.2016.06.185

    Article  Google Scholar 

  8. Mahtabi MJ, Shamsaei N (2016) A modified energy-based approach for fatigue life prediction of superelastic NiTi in presence of tensile mean strain and stress. Int J Mech Sci 117:321–333. https://doi.org/10.1016/j.ijmecsci.2016.08.012

    Article  Google Scholar 

  9. Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G: J Aerosp Eng 221:535–552. https://doi.org/10.1243/09544100JAERO211

    Article  CAS  Google Scholar 

  10. Fumagalli L, Butera F, Coda A (2009) SmartFlex® NiTi wires for shape memory actuators. J Mater Eng Perfm 18:691–695. https://doi.org/10.1007/s11665-009-9407-9

    Article  CAS  Google Scholar 

  11. Kohl M (2004) Shape memory microactuators. Springer, Berlin

    Book  Google Scholar 

  12. Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 378:24–33

    Article  Google Scholar 

  13. Mammano GS, Dragoni E (2014) Functional fatigue of Ni–Ti shape memory wires under various loading conditions. Int J Fatigue 69:71–83. https://doi.org/10.1016/J.IJFATIGUE.2012.03.004

    Article  Google Scholar 

  14. George GK, Sanjeev K, Sekar M (2011) An in vitro evaluation of the effect of deep dry cryotreatment on the cutting efficiency of three rotary nickel titanium instruments. J Conserv Dent 14:169–172. https://doi.org/10.4103/0972-0707.82627

    Article  CAS  Google Scholar 

  15. Pelton AR, Huang GH, Moine P, Sinclair R (2012) Effects of thermal cycling on microstructure and properties in Nitinol. Mater Sci Eng A 532:130–138

    Article  CAS  Google Scholar 

  16. Ataalla T, Leary M, Subic A (2012) Functional fatigue of shape memory alloys. In: Sustainable automotive technologies 2012. Springer, Berlin, pp 39–43. https://doi.org/10.1007/978-3-642-24145-1_6

  17. Maletta C, Sgambitterra E, Furgiuele F et al (2014) Fatigue properties of a pseudoelastic NiTi alloy: strain ratcheting and hysteresis under cyclic tensile loading. Int J Fatigue 66:78–85. https://doi.org/10.1016/J.IJFATIGUE.2014.03.011

    Article  CAS  Google Scholar 

  18. Hornbogen E, Heckmann A (2003) Improved fatigue resistance of pseudo-elastic NiTi alloys by thermomechanical treatment. Mat-wiss u. Werkstofftech 34:464–468

    Article  CAS  Google Scholar 

  19. Jaureguizahar S, Soul H, Chapetti M, Yawny A (2015) Characterization of fatigue life of ultrafine grained NiTi superelastic wires under uniaxial loading. Procedia Mater Sci 9:326–334. https://doi.org/10.1016/j.mspro.2015.05.001

    Article  CAS  Google Scholar 

  20. da Silva TC, da Silva EP (2021) Cryogenic treatment effect on cyclic behavior of Ni54Ti46 shape memory alloy. Shape Mem Superelast 7:421–437. https://doi.org/10.1007/s40830-021-00338-x

    Article  Google Scholar 

  21. Kim JW, Griggs JA, Regan JD, Ellis RA, Cai Z (2005) Effect of cryogenic treatment on nickel-titanium endodontic instruments. Int Endod J 38:364–371. https://doi.org/10.1111/j.1365-2591.2005.00945.x

    Article  CAS  Google Scholar 

  22. Priyadarshini M, Biswas CK (2022) Cryo-treatment of NiTi alloys. In: Nickel-Titanium smart hybrid materials. Elsevier, pp 57–68. https://doi.org/10.1016/B978-0-323-91173-3.00011-0

  23. ASTM E606/E606M (2012) Standard test method for strain-controlled fatigue testing. ASTM International, West Conshohocken, PA, United States. https://doi.org/10.1520/E0606-04E01

  24. ASTM F2516-18 (2018) Standard test method for tension testing of Nickel-Titanium superelastic materials. ASTM International, West Conshohocken, PA, United States. https://doi.org/10.1520/F2516-18

  25. ASTM E407-07 (2015) Standard practice for microetching metals and alloys, American Society for Testing and Materials International, West Conshohocken, PA, United States. https://doi.org/10.1520/E0407-07

  26. ASTM E112-13 (2021) Standard Test methods for determining average grain size. American Society for Testing and Materials International, West Conshohocken, PA, United States. https://doi.org/10.1520/E0112-13R21

  27. Maletta C, Sgambitterra E, Furgiuele F et al (2012) Fatigue of pseudoelastic NiTi within the stress-induced transformation regime: a modified Coffin-Manson approach. Smart Mater Struct. https://doi.org/10.1088/0964-1726/21/11/112001

    Article  Google Scholar 

  28. Mahtabi MJ, Shamsaei N, Mitchell MR (2015) Fatigue of Nitinol: the state-of-the-art and ongoing challenges. J Mech Behav Biomed Mater 50:228–254. https://doi.org/10.1016/j.jmbbm.2015.06.010

    Article  CAS  Google Scholar 

  29. Miyazaki S, Imai T, Igo Y, Otsuka K (1986) Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys. Metall Trans A Phys Metall Mater Sci 17A:115–120. https://doi.org/10.1007/BF02644447

    Article  CAS  Google Scholar 

  30. Zurbitu J, Santamarta R, Picornell C et al (2010) Impact fatigue behavior of superelastic NiTi shape memory alloy wires. Mater Sci Eng A 528:764–769. https://doi.org/10.1016/j.msea.2010.09.094

    Article  CAS  Google Scholar 

  31. Kang G, Kan Q (2017) Cyclic plasticity of engineering materials: experiments and models. Wiley, New York

    Book  Google Scholar 

  32. Wang XM, Wang YF, Lu ZZ et al (2010) An experimental study of the superelastic behavior in NiTi shape memory alloys under biaxial proportional and non-proportional cyclic loadings. Mech Mater 42:365–373. https://doi.org/10.1016/J.MECHMAT.2009.11.010

    Article  Google Scholar 

  33. Castilho WS (2017) Contribuição à influência de tratamento criogênico em propriedades térmicas e mecânicas das ligas NiTi austenítica e martensítica com memória de forma, Ph.D. Thesis, Available from University of Brasília Library, BR. Thesis completed April

  34. Zhang J, Perez RJ, Lavernia EJ (1993) Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials. J Mater Sci 28:2395–2404. https://doi.org/10.1007/BF01151671

    Article  CAS  Google Scholar 

  35. Montecinos S (2015) Influence of microstructural parameters on damping capacity in CuAlBe shape memory alloys. Mater Des 68:215–220. https://doi.org/10.1016/j.matdes.2014.12.034

    Article  CAS  Google Scholar 

  36. Chluba C, Ge W, Dankwort T et al (2016) Effect of crystallographic compatibility and grain size on the functional fatigue of sputtered TiNiCuCo thin films. Philos Trans R Soc A: Math Phys Eng Sci. https://doi.org/10.1098/rsta.2015.0311

    Article  Google Scholar 

Download references

Acknowledgements

TC da Silva acknowledges Carlos Chagas Filho Foundation for Research Support of Rio de Janeiro State (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ in Portuguese) for its financial support through the project ref.E-26/210.349/2022 and E-26/200.585/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gontijo, M., da Silva, E.P., de Castro, M.C.S. et al. Influence of Deep Cryogenic Treatment on the Pseudoelastic Behavior of the Ni57Ti43 Alloy. Shap. Mem. Superelasticity 8, 215–225 (2022). https://doi.org/10.1007/s40830-022-00387-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-022-00387-w

Keyword

Navigation