Skip to main content
Log in

Optimizing Magnetocaloric Properties of Heusler-Type Magnetic Shape Memory Alloys by Tuning Magnetostructural Transformation Parameters

  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Heusler-type magnetic shape memory alloys show a magnetostructural transformation from the low-magnetization phase to the high-magnetization phase upon the application of external magnetic fields. As a result, these alloys exhibit fascinating multifunctional properties, such as magnetic shape memory effect, magnetocaloric effect, magnetoresistance, and magnetic superelasticity. All these functional properties are intimately related to the coupling of the structural and magnetic transitions. Therefore, deliberate tuning of the magnetostructural transformation parameters is essential for obtaining optimal multifunctional properties. Here, we show that by tuning the magnetostructural transformation parameters, we are able to achieve a variety of novel magnetocaloric properties with different application potentials: (1) large magnetic entropy change of 31.9 J kg−1 K−1 under a magnetic field of 5 T; (2) giant effective magnetic refrigeration capacity (251 J kg−1) with a broad operating temperature window (33 K) under a magnetic field of 5 T; (3) large reversible field-induced entropy change (about 15 J kg−1 K−1) and large reversible effective magnetic refrigeration capacity (77 J kg−1) under a magnetic field of 5 T. The balanced tuning of magnetostructural transformation parameters of magnetic shape memory alloys may provide an instructive reference to the shape memory and magnetic refrigeration communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pecharsky VK, Gschneidner KA Jr (1999) Magnetocaloric effect and magnetic refrigeration. J Magn Magn Mater 200:44–56

    Article  Google Scholar 

  2. Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP (2011) Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 23:821–842

    Article  Google Scholar 

  3. Chirkova A, Skokov KP, Schultz L, Baranov NV, Gutfleisch O, Woodcock TG (2015) Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions. Acta Mater 106:15–21

    Article  Google Scholar 

  4. Kitanovski A, Tuek J, Tomc U, Plaznik U, Ozbolt M, Poredo A (2014) Magnetocaloric energy conversion: from theory to applications. Springer International Publishing, Cham

    Google Scholar 

  5. Pecharsky VK, Gschneidner KA Jr (1997) Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett 78:4494–4497

    Article  Google Scholar 

  6. Liu J, Krautz M, Skokov K, Woodcock TG, Gutfleisch O (2011) Systematic study of the microstructure, entropy change and adiabatic temperature change in optimized La-Fe-Si alloys. Acta Mater 59:3602–3611

    Article  Google Scholar 

  7. Stern-Taulats E, Gracià-Condal A, Planes A, Lloveras P, Barrio M, Tamarit J-L, Pramanick S, Majumdar S, Mañosa L (2015) Reversible adiabatic temperature changes at the magnetocaloric and barocaloric effects in Fe49Rh51. Appl Phys Lett 107:152409

    Article  Google Scholar 

  8. Tegus O, Brück E, Buschow KHJ, de Boer FR (2002) Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415:150–152

    Article  Google Scholar 

  9. Liu J, Skokov K, Gutfleisch O (2012) Magnetostructural transition and adiabatic temperature change in Mn-Co-Ge magnetic refrigerants. Scr Mater 66:642

    Article  Google Scholar 

  10. Li ZB, Zou NF, Sánchez-Valdés CF, Sánchez Llamazares JL, Yang B, Hu Y, Zhang YD, Esling C, Zhao X, Zuo L (2016) Thermal and magnetic field-induced martensitic transformation in Ni50Mn25-xGa25Cux (0 ≤ x ≤ 7) melt-spun ribbons. J Phys D Appl Phys 49:025002

    Article  Google Scholar 

  11. Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O (2012) Giant magnetocaloric effect driven by structural transitions. Nat Mater 11:620–626

    Article  Google Scholar 

  12. Nayak AK, Suresh KG, Nigam AK (2009) Giant inverse magnetocaloric effect near room temperature in Co substituted NiMnSb Heusler alloys. J Phys D Appl Phys 42:035009

    Article  Google Scholar 

  13. Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Manosa L, Planes A (2005) Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat Mater 4(6):450

    Article  Google Scholar 

  14. Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K (2006) Magnetic-field-induced phase recovery by reverse phase transformation. Nature 439:957–960

    Article  Google Scholar 

  15. Yu SY, Liu ZH, Liu GD, Chen JL, Cao ZX, Wu GH, Zhang B, Zhang XX (2006) Large magnetoresistance in single-crystalline Ni50Mn50−x In x alloys (x = 14–16) upon martensitic transformation. Appl Phys Lett 89:162503

    Article  Google Scholar 

  16. Zhao DW, Liu J, Feng Y, Sun W, Yan AR (2017) Giant elastocaloric effect and its irreversibility in [001]-oriented Ni45Mn36.5In13.5Co5 meta-magnetic shape memory alloys. Appl Phys Lett 110:021906

    Article  Google Scholar 

  17. Gottschall T, Skokov KP, Burriel R, Gutfleisch O (2016) On the S(T) diagram of magnetocaloric materials with first-order transition: Kinetic and cyclic effects of Heusler alloys. Acta Mater 107:1–8

    Article  Google Scholar 

  18. Mcleod MV, Giri AK, Paterson BA, Dennis CL, Zhou L, Vogel SC, Gourdon O, Reiche HM, Cho KC, Sohn YH, Shull RD, Majumdar BS (2015) Magnetocaloric response of non-stoichiometric Ni2MnGa alloys and the influence of crystallographic texture. Acta Mater 97:245–256

    Article  Google Scholar 

  19. Bruno NM, Yegin C, Karaman I, Chen JH, Ross JH Jr, Liu J, Li JG (2014) The effect of heat treatments on Ni43Mn42Co4Sn11 metamagnetic shape memory alloys for magnetic refrigeration. Acta Mater 74:66–84

    Article  Google Scholar 

  20. Tian FH, Zeng YY, Xu MW, Yang S, Lu T, Wang JQ, Chang TY, Adil M, Zhang Y, Zhou C, Song XP (2015) A magnetocaloric effect arising from a ferromagnetic transition in the martensitic state in Heusler alloy of Ni50Mn36Sb8Ga6. Appl Phys Lett 107:012406

    Article  Google Scholar 

  21. Stern-Taulats E, Castillo-Villa PO, Mañosa L, Frontera C, Pramanick S, Majumdar S, Planes A (2014) Magnetocaloric effect in the low hysteresis Ni-Mn-In metamagnetic shape memory Heusler alloy. J Appl Phys 115:173907

    Article  Google Scholar 

  22. Gottschall T, Skokov KP, Benke D, Gruner ME, Gutfleisch O (2016) Contradictory role of the magnetic contribution in inverse magnetocaloric Heusler materials. Phys Rev B 93:184431

    Article  Google Scholar 

  23. Huang L, Cong DY, Ma L, Nie ZH, Wang MG, Wang ZL, Suo HL, Ren Y, Wang YD (2015) Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy. J Alloys Compd 647:1081–1085

    Article  Google Scholar 

  24. Huang L, Cong DY, Suo HL, Wang YD (2014) Giant magnetic refrigeration capacity near room temperature in Ni40Co10Mn40Sn10 multifunctional alloy. Appl Phys Lett 104:132407

    Article  Google Scholar 

  25. Huang L, Cong DY, Ma L, Nie ZH, Wang ZL, Suo HL, Ren Y, Wang YD (2016) Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy. Appl Phys Lett 108:032405

    Article  Google Scholar 

  26. Bourgault D, Tillier J, Courtois P, Maillard D, Chaud X (2010) Large inverse magnetocaloric effect in Ni45Co5Mn37.5In12.5 single crystal above 300 K. Appl Phys Lett 96:132501

    Article  Google Scholar 

  27. Balli M, Fruchart D, Gignoux D, Zach R (2009) The “colosssal” magnetocaloric effect in Mn1-xFexAs: What are we really measuring? Appl Phys Lett 95:072509

    Article  Google Scholar 

  28. Provenzano V, Shapiro AJ, Shull RD (2004) Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature 429:853

    Article  Google Scholar 

  29. Yang LH, Zhang H, Hu FX, Sun JR, Pan LQ, Shen BG (2014) Magnetocaloric effect and martensitic transition in Ni50Mn36-xCoxSn14. J Alloys Compd 588:46–48

    Article  Google Scholar 

  30. Pathak AK, Khan M, Dubenko I, Stadler S, Ali N (2007) Large magnetic entropy change in Ni50Mn50−x In x Heusler alloys. Appl Phys Lett 90:262504

    Article  Google Scholar 

  31. Han ZD, Wang DH, Zhang CL, Tang SL, Gu BX, Du YW (2006) Large magnetic entropy changes in Ni45.4Mn41.5In13.1 ferromagnetic shape memory alloy. Appl Phys Lett 89:182507

    Article  Google Scholar 

  32. Pathak AK, Dubenko I, Karaca HE, Stadler S, Ali N (2010) Large inverse magnetic entropy changes and magnetoresistance in the vicinity of a field-induced martensitic transformation in Ni50−x Co x Mn32−y Fe y Ga18. Appl Phys Lett 97:062505

    Article  Google Scholar 

  33. Xuan HC, Wang DH, Zhang CL, Han ZD, Gu BX, Du YW (2008) Boron’s effect on martensitic transformation and magnetocaloric effect in Ni43Mn46Sn11B x alloys. Appl Phys Lett 92:102503

    Article  Google Scholar 

  34. Emre NM, Bruno SY, Emre I (2014) Karaman, Effect of niobium addition on the martensitic transformation and magnetocaloric effect in low hysteresis NiCoMnSn magnetic shape memory alloys. Appl Phys Lett 105:231910

    Article  Google Scholar 

  35. Cong DY, Roth S, Schultz L (2012) Magnetic properties and structural transformations in Ni–Co–Mn–Sn multifunctional alloys. Acta Mater 60:5335–5351

    Article  Google Scholar 

  36. Karaca HE, Karaman I, Basaran B, Ren Y, Chumlyakov YI, Maier HJ (2009) Magnetic field-induced phase transformation in NiMnCoIn magnetic shape memory alloys—a new actuation mechanism with large work output. Adv Funct Mater 19:983–998

    Article  Google Scholar 

  37. Algarabel PA, Ibarra MR, Marquina C, Del Moral A, Galibert J, Iqbal M, Askenazy S (1995) Giant room-temperature magnetoresistance in the FeRh alloy. Appl Phys Lett 66:3062–3064

    Article  Google Scholar 

  38. Morellon L, Algarabel PA, Lbarra MR, Blasco J, Garcia-Landa B, Arnold Z, Albertini F (1998) Magnetic-field-induced structural phase transition in Gd5(Si1.8Ge2.2). Phys Rev B 58:R14721

    Article  Google Scholar 

  39. Hu FX, Shen BG, Sun JR, Wang GJ, Cheng ZH (2002) Very large magnetic entropy change near room temperature in LaFe11.2Co0.7Si1.1. Appl Phys Lett 80:826

    Article  Google Scholar 

  40. Trung NT, Zhang L, Caron L, Buschow KHJ, Brück E (2010) Giant magnetocaloric effects by tailoring the phase transitions. Appl Phys Lett 96:172504

    Article  Google Scholar 

  41. Wang WH, Chen JL, Liu ZH, Wu GH, Zhan WS (2002) Thermal hysteresis and friction of phase boundary motion in ferromagnetic Ni52Mn23Ga25 single crystals. Phys. Rev. B 65:012416

    Article  Google Scholar 

  42. Manekar M, Roy SB (2008) Reproducible room temperature giant magnetocaloric effect in Fe-Rh. J Phys D Appl Phys 41:192004

    Article  Google Scholar 

  43. Liu J, Scheerbaum N, Lyubina J, Gutfleisch O (2008) Reversibility of magnetostructural transition and associated magnetocaloric effect in Ni-Mn-In-Co. Appl Phys Lett 93:102512

    Article  Google Scholar 

  44. Chen L, Hu FX, Wang J, Bao LF, Sun JR, Shen BG, Yin JH, Pan LQ (2012) Magnetoresistance and magnetocaloric properties involving strong metamagnetic behavior in Fe-doped Ni45(Co1−x Fe x )5Mn36.6In13.4 alloys. Appl Phys Lett 101:012401

    Article  Google Scholar 

  45. Chattopadhyay MK, Sharma VK, Roy SB (2008) Thermomagnetic history dependence of magnetocaloric effect in Ni50Mn34In16. Appl Phys Lett 92:022503

    Article  Google Scholar 

  46. Phan T-L, Zhang P, Dan NH, Yen NH, Thanh PT, Thanh TD, Phan MH, Yu SC (2012) Coexistence of conventional and inverse magnetocaloric effects and critical behaviors in Ni50Mn50−x Sn x (x = 13 and 14) alloy ribbons. Appl Phys Lett 101:212403

    Article  Google Scholar 

  47. Li ZB, Zhang YD, Sánchez-Valdés CF, Sánchez Llamazares JL, Esling C, Zhao X, Zuo L (2014) Giant magnetocaloric effect in melt-spun Ni-Mn-Ga ribbons with magneto-multistructural transformation. Appl Phys Lett 104:044101

    Article  Google Scholar 

  48. Sharma VK, Chattopadhyay MK, Roy SB (2007) Large inverse magnetocaloric effect in Ni50Mn34In16. J Phys D Appl Phys 40:1869–1873

    Article  Google Scholar 

  49. Zhao JL, Shen J, Zhang H, Xu ZY, Wu JF, Hu FX, Sun JR, Shen BG (2012) Hydrogenating process and magnetocaloric effect in La0.7Pr0.3Fe11.5Si1.5C0.2Hx hydrides. J. Alloys Compd. 520:277–280

    Article  Google Scholar 

  50. Shen J, Gao B, Dong QY, Li YX, Hu FX, Sun JR, Shen BG (2008) La1-−x Pr x Fe10.7Co0.8Si1.5 compounds near room temperature. J Phys D Appl Phys 41:245005

    Article  Google Scholar 

  51. Stadler S, Khan M, Mitchell J, Ali N, Gomes AM, Dubenko I, Takeuchi AY, Guimarães AP (2006) Magnetocaloric properties of Ni2Mn1−x Cu x Ga. Appl Phys Lett 88:192511

    Article  Google Scholar 

  52. Zhang XX, Zhang B, Yu SY, Liu ZH, Xu WJ, Liu GD, Chen JL, Cao ZX, Wu GH (2007) Combined giant inverse and normal magnetocaloric effect for room-temperature magnetic cooling. Phys Rev B 76:132403

    Article  Google Scholar 

  53. Magnus G, Carvalho AA, Coelho PJ Von, Ranke SC (2011) Alves, The isothermal variation of the entropy change (ΔS T) may be miscalculated from magnetization isotherms in some cases: MnAs and Gd5Ge2Si2 compounds as examples. J Alloys Compd 509:3452–3456

    Article  Google Scholar 

  54. Guillou F, Courtois P, Porcar L, Plaindoux P, Bourgault D, Hardy V (2012) Calorimetric investigation of the magnetocaloric effect in Ni45Co5Mn37.5In12.5. J Phys D Appl Phys 40:255001

    Article  Google Scholar 

  55. Wang ZL, Nie ZH, Zeng JX, Su R, Zhang YP, Brown DE, Ren Y, Wang YD (2013) First-order magnetostructural transformation in Fe doped Mn-Co-Ge alloys. J Alloys Compd 577:486–490

    Article  Google Scholar 

  56. Chatterjee S, Giri S, De SK, Majumdar S (2010) Giant magneto-caloric effect near room temperature in Ni-Mn-Sn-Ga alloys. J Alloys Compd 503:273–276

    Article  Google Scholar 

  57. Bhobe PA, Priolkar KR, Nigam AK (2007) Room temperature magnetocaloric effect in Ni-Mn-In. Appl Phys Lett 91:242503

    Article  Google Scholar 

  58. Krenke T, Duman E, Acet M, Moya X, Mañosa L, Planes A (2007) Effect of Co and Fe on the inverse magnetocaloric properties of Ni-Mn-Sn. J Appl Phys 102:033903

    Article  Google Scholar 

  59. Zhao XG, Tong M, Shih CW, Li B, Chang WC, Liu W, Zhang ZD (2013) Microstructure, martensitic transitions, magnetocaloric, and exchange bias properties in Fe-doped Ni-Mn-Sn melt-spun ribbons. J Appl Phys 113:17A913

    Article  Google Scholar 

  60. Fabbrici S, Kamarad J, Arnold Z, Casoli F, Paoluzi A, Bolzoni F, Cabassi R, Solzi M, Porcari G, Pernechele C, Albertini F (2011) From direct to inverse giant magnetocaloric effect in Co-doped NiMnGa multifunctional alloys. Acta Mater 59:412–419

    Article  Google Scholar 

  61. Porcari G, Fabbrici S, Pernechele C, Albertini F, Buzzi M, Paoluzi A, Kamarad J, Arnold Z, Solzi M (2012) Reverse magnetostructural transformation and adiabatic temperature change in Co- and In-substituted Ni-Mn-Ga alloys. Phys Rev B 85:024414

    Article  Google Scholar 

  62. Zhang Y, Liu J, Zheng Q, Zhang J, Xia WX, Du J, Yan AR (2014) Large magnetic entropy change and enhanced mechanical properties of Ni-Mn-Sn-C alloys. Scr. Mater. 75:26–29

    Article  Google Scholar 

  63. Sharma VK, Chattopadhyay MK, Sharath Chandra LS, Roy SB (2011) Elevating the temperature regime of the large magnetocaloric effect in a Ni-Mn-In alloy towards room temperature. J Phys D: Appl Phys 44:145002

    Article  Google Scholar 

  64. Hu FX, Wang J, Shen J, Gao B, Sun JR, Shen BG (2009) Large magnetic entropy change with small thermal hysteresis near room temperature in metamagnetic alloys Ni51Mn49−x In x . J Appl Phys 105:07A940

    Article  Google Scholar 

  65. Yu SY, Ma L, Liu GD, Liu ZH, Chen JL, Cao ZX, Wu GH, Zhang B, Zhang XX (2007) Magnetic field-induced martensitic transformation and large magnetoresistance in NiCoMnSb alloys. Appl Phys Lett 90:242501

    Article  Google Scholar 

  66. Zavareh MG, Mejía CS, Nayak AK, Skourski Y, Wosnitza J, Felser C, Nicklas M (2015) Direct measurements of the magnetocaloric effect in pulsed magnetic fields: The example of the Heusler alloy Ni50Mn35In15. Appl Phys Lett 106:071904

    Article  Google Scholar 

  67. Nayak AK, Suresh KG, Nigam AK (2011) Anomalous effects of repeated martensitic transition on the transport, magnetic and thermal properties in Ni-Co-Mn-Sb Heusler alloy. Acta Mater 59:3304–3312

    Article  Google Scholar 

  68. Nayak AK, Suresh KG, Nigam AK (2010) Irreversibility of field-induced magnetostructural transition in NiCoMnSb shape memory alloy revealed by magnetization, transport and heat capacity studies. Appl Phys Lett 96:112503

    Article  Google Scholar 

  69. Cong DY, Roth S, Liu J, Luo Q, Pötschke M, Hürrich C, Schultz L (2010) Superparamagnetic and superspin glass behaviors in the martensitic state of Ni43.5Co6.5Mn39Sn11 magnetic shape memory alloy. Appl Phys Lett 96:112504

    Article  Google Scholar 

  70. Kainuma R, Imano Y, Ito W, Morito H, Sutou Y, Oikawa K, Fujita A, Ishida K, Okamoto S, Kitakami O, Kanomata T (2006) Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy. Appl Phys Lett 88:192513

    Article  Google Scholar 

  71. Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B (2007) Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In. Phys Rev B 75:104414

    Article  Google Scholar 

  72. Sharma VK, Chattopadhyay MK, Kumar R, Ganguli T, Tiwari P, Roy SB (2007) Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. J Phys: Condens Matter 19:496207

    Google Scholar 

  73. Li WJ, Ren Q, Zhang XK, Lv XG, Liu H, Meng J, Li D, Li ZD (2009) Zhang, Magnetostructural coupling and magnetocaloric effect in Ni-Mn-In. Appl Phys Lett 95:172506

    Article  Google Scholar 

  74. Stern-Taulats E, Planes A, Lloveras P, Barrio M, Tamarit J-L, Pramanick S, Majumdar S, Yüce S, Emre B, Frontera C, Mañosa L (2015) Tailoring barocaloric and magnetocaloric properties in low-hysteresis magnetic shape memory alloys. Acta Mater 96:324–332

    Article  Google Scholar 

  75. Song Y, Chen X, Dadabe V, Shield TW, James RD (2013) Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature 502:85–88

    Article  Google Scholar 

  76. Liu J (2014) Optimizing and fabricating magnetocaloric materials. Chin Phys B 23:047503

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 51471030, 11305008, and 51527801), the National High Technology Research and Development Program of China (863 Program) (No. 2015AA034101), the Fundamental Research Funds for the Central Universities (Nos. 06111023 and 06111020), and also supported by State Key Laboratory for Advanced Metals and Materials (Grant Nos. 2016-T01 and 2015-ZD01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoyong Cong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Qu, Y., Cong, D. et al. Optimizing Magnetocaloric Properties of Heusler-Type Magnetic Shape Memory Alloys by Tuning Magnetostructural Transformation Parameters. Shap. Mem. Superelasticity 3, 218–229 (2017). https://doi.org/10.1007/s40830-017-0116-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-017-0116-1

Keywords

Navigation