Skip to main content
Log in

Modeling the Cyclic Behavior of Shape Memory Alloys

  • SPECIAL ISSUE: THEORY, MODELING, AND SIMULATION OF SHAPE MEMORY ALLOYS, INVITED PAPER
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

The phenomenon of functional fatigue occurs during cyclic loading of pseudoelastic shape memory alloys. We model this effect by considering an irreversible martensitic volume fraction in addition to the reversible amounts of austenite and martensite based on variational principles. The inclusion of irreversible martensitic volume fractions coincides with experimental observations and enables the model to be easily calibrated without any fitting functions. In our previous studies, we modeled the polycrystalline material structure by static discretization of a relatively large number of randomly chosen grain orientations, which required much numerical effort. In contrast, we now apply a dynamic representation of the orientation distribution function to the modeling of functional fatigue which has proven to be beneficial regarding the numerical performance. To this end, we take into account an averaged grain orientation parameterized by three Euler angles that serve as additional internal variables. This results in an extremely reduced numerical effort. The model derivation is given along with the numerical implementation and computer experiments on the cyclic behavior of shape memory alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Bolotin VV (1999) Mechanics of fatigue, vol 11. CRC Press, Baco Raton

    Google Scholar 

  2. Suresh S (1998) Fatigue of materials. Cambridge university press, Cambridge

    Book  Google Scholar 

  3. Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner MF-X (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 378(1):24–33

    Article  Google Scholar 

  4. Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  5. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mate Sci 50(5):511–678

    Article  Google Scholar 

  6. Wagner MF-X (2005) Ein Beitrag zur strukturellen und funktionalen Ermüdung von Drähten und Federn aus NiTi-Formgedächtnislegierungen. Univ.-Verlag, Europe

  7. Burow J (2010) Herstellung, Eigenschaften und Mikrostruktur von ultrafeinkörnigen NiTi-Formgedächtnislegierungen. urn:nbn:de:hbz:294-29048

  8. Delville R, Malard B, Pilch J, Sittner P, Schryvers D (2011) Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires. Int J Plast 27(2):282–297

    Article  Google Scholar 

  9. Miyazaki S, Imai T, Igo Y, Otsuka K (1986) Effect of cyclic deformation on the pseudoelasticity characteristics of Ti–Ni alloys. Metall Trans A 17(1):115–120

    Article  Google Scholar 

  10. Ibarra A, San Juan J, Bocanegra EH, Nó ML (2007) Evolution of microstructure and thermomechanical properties during superelastic compression cycling in Cu–Al–Ni single crystals. Acta Mater 55(14):4789–4798

    Article  Google Scholar 

  11. Morgan NB, Friend CM (2001) A review of shape memory stability in NiTi alloys. J Phys 11(Pr8):325

    Google Scholar 

  12. Wagner MF-X, Nayan N, Ramamurty U (2008) Healing of fatigue damage in NiTi shape memory alloys. J Phys D 41(18):185408

    Article  Google Scholar 

  13. Brinson C (1993) One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4(2):229–242

    Article  Google Scholar 

  14. Lexcellent C, Vivet A, Bouvet C, Calloch S, Blanc P (2002) Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape-memory alloys. J Mech Phys Solids 50(12):2717–2735

    Article  Google Scholar 

  15. Bouvet C, Calloch S, Lexcellent C (2004) A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings. Eur J Mech A 23(1):37–61

    Article  Google Scholar 

  16. Govindjee S, Miehe C (2001) A multi-variant martensitic phase transformation model: formulation and numerical implementation. Comput Methods Appl Mech Eng 191(3):215–238

    Article  Google Scholar 

  17. Stupkiewicz S, Petryk H (2013) A robust model of pseudoelasticity in shape memory alloys. Int J Numer Methods Eng 93(7):747–769

    Article  Google Scholar 

  18. Stupkiewicz S, Petryk H (2002) Modelling of laminated microstructures in stress-induced martensitic transformations. J Mech Phys Solids 50(11):2303–2331

    Article  Google Scholar 

  19. Stein E, Sagar G (2008) Theory and finite element computation of cyclic martensitic phase transformation at finite strain. Int J Numer Methods Eng 74(1):1–31

    Article  Google Scholar 

  20. Mielke A, Theil F, Levitas VI (2002) A variational formulation of rate-independent phase transformations using an extremum principle. Arch Ration Mech Anal 162(2):137–177

    Article  Google Scholar 

  21. Govindjee S, Hall GJ (2000) A computational model for shape memory alloys. Int J Solids Struct 37(5):735–760

    Article  Google Scholar 

  22. Govindjee S, Kasper EP (1999) Computational aspects of one-dimensional shape memory alloy modeling with phase diagrams. Comput Methods Appl Mech Eng 171(3):309–326

    Article  Google Scholar 

  23. Saint-Sulpice L, Chirani SA, Calloch S (2009) A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings. Mech Mater 41(1):12–26

    Article  Google Scholar 

  24. Abeyaratne R, Kim S-J (1997) Cyclic effects in shape-memory alloys: a one-dimensional continuum model. Int J Solids Struct 34(25):3273–3289

    Article  Google Scholar 

  25. Abeyaratne R, Kim S-J, Knowles JK (1994) A one-dimensional continuum model for shape-memory alloys. Int J Solids Struct 31(16):2229–2249

    Article  Google Scholar 

  26. Auricchio F, Reali A, Stefanelli U (2007) A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity. Int J Plast 23(2):207–226

    Article  Google Scholar 

  27. Auricchio F, Petrini L (2004) A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int J Numer Methods Eng 61(6):807–836

    Article  Google Scholar 

  28. Hartl DJ, Chatzigeorgiou G, Lagoudas DC (2010) Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys. Int J Plast 26(10):1485–1507

    Article  Google Scholar 

  29. Lagoudas DC, Hartl D, Chemisky Y, Machado L, Popov P (2012) Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. Int J Plast 32:155–183

    Article  Google Scholar 

  30. Bo Z, Lagoudas DC (1999) Thermomechanical modeling of polycrystalline SMAs under cyclic loading, part III: evolution of plastic strains and two-way shape memory effect. Int J Eng Sci 37(9):1175–1203

    Article  Google Scholar 

  31. Lagoudas DC, Entchev PB (2004) Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. part I: constitutive model for fully dense SMAs. Mech Mater 36(9):865–892

    Article  Google Scholar 

  32. Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, New York

    Google Scholar 

  33. Tanaka K, Nishimura F, Hayashi T, Tobushi H, Lexcellent C (1995) Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads. Mech Mater 19(4):281–292

    Article  Google Scholar 

  34. Lexcellent C, Bourbon G (1996) Thermodynamical model of cyclic behaviour of Ti–Ni and Cu–Zn–Al shape memory alloys under isothermal undulated tensile tests. Mech Mater 24(1):59–73

    Article  Google Scholar 

  35. Bartel T, Osman M, Menzel A (2016) A phenomenological model for the simulation of functional fatigue in shape memory alloy wires. Meccanica 52:973

    Article  Google Scholar 

  36. Waimann J, Junker P, Hackl K (2016) A coupled dissipation functional for modeling the functional fatigue in polycrystalline shape memory alloys. Eur J Mech A 55:110–121

    Article  Google Scholar 

  37. Junker P (2014) A novel approach to representative orientation distribution functions for modeling and simulation of polycrystalline shape memory alloys. Int J Numer Methods Eng 98(11):799–818

    Article  Google Scholar 

  38. Simon T, Kröger A, Somsen C, Dlouhy A, Eggeler G (2010) On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Mater 58(5):1850–1860

    Article  Google Scholar 

  39. Krooß P, Niendorf T, Kadletz PM, Somsen C, Gutmann MJ, Chumlyakov YI, Schmahl WW, Eggeler G, Maier HJ (2015) Functional fatigue and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 high-temperature shape memory alloy single crystals. Shape Memory Superelast 1(1):6–17

    Article  Google Scholar 

  40. Carstensen C, Hackl K, Mielke A (2002) Non-convex potentials and microstructures in finite–strain plasticity. Proc R Soc Lond A 458(2018):299–317

    Article  Google Scholar 

  41. Hackl K, Fischer FD (2008) On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc R Soc A 464(2089):117–132

    Article  Google Scholar 

  42. Junker P, Makowski J, Hackl K (2014) The principle of the minimum of the dissipation potential for non-isothermal processes. Contin Mech Thermodyn 26(3):259–268

    Article  Google Scholar 

  43. Junker P, Hackl K (2015) A variational growth approach to topology optimization. Struct Multidiscip Optim 52(2):293–304

    Article  Google Scholar 

  44. Günther C, Junker P, Hackl K (2015) A variational viscosity-limit approach to the evolution of microstructures in finite crystal plasticity. Proc R Soc A 471:20150110

    Article  Google Scholar 

  45. Huo Y, Müller I (1993) Nonequilibrium thermodynamics of pseudoelasticity. Contin Mech Thermodyn 5(3):163–204

    Article  Google Scholar 

  46. Junker P, Jaeger S, Kastner O, Eggeler G, Hackl K (2015) Variational prediction of the mechanical behavior of shape memory alloys based on thermal experiments. J Mech Phys Solids 80:86–102

    Article  Google Scholar 

  47. Junker P (2014) An accurate, fast and stable material model for shape memory alloys. Smart Mater Struct 23(11):115010

    Article  Google Scholar 

  48. Hackl K (1999) On the representation of anisotropic elastic materials by symmetric irreducible tensors. Contin Mech Thermodyn 11(6):353–369

    Article  Google Scholar 

  49. Mehrabadi MM, Cowin SC (1990) Eigentensors of linear anisotropic elastic materials. Q J Mech Appl Math 43(1):15–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Waimann.

Additional information

Submitted to Shape Memory and Superelasticity— Invited Special Issue Contribution [2016].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waimann, J., Junker, P. & Hackl, K. Modeling the Cyclic Behavior of Shape Memory Alloys. Shap. Mem. Superelasticity 3, 124–138 (2017). https://doi.org/10.1007/s40830-017-0105-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-017-0105-4

Keywords

Navigation