Skip to main content
Log in

Intriguing minerals: corundum in the world of rubies and sapphires with special attention to Macedonian rubies

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

This lecture text presents features of the fascinating mineral corundum and its gem varieties, ruby and sapphire. The geologic occurrences of its varieties and the best-known world localities are presented in detail. The mineralogy and crystallography of corundum, as well as its occurrence forms, are discussed. The origin of their colour varieties and their usage are described, in addition to their important physical characteristics. Applications in the watch and laser industries and as an abrasive material, among others, are included. The ruby variety from dolomite marble in North Macedonia exhibits the unique optical phenomenon known as diasporescence–the inclusion of diaspore crystals in the corundum matrix. This phenomenon affects the parting of corundum crystals and influences their colour, density and hardness. Therefore, special attention is paid here to morphological and physical characteristics of the Macedonian gem corundum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. International Mineralogical Association. http://cnmnc.main.jp. Accessed 27 March 2021

  2. Tomaszewski PE (2002) Jan Czochralski—father of the Czochralski method. J Cryst Growth 236:1–4

    Article  CAS  Google Scholar 

  3. Isler P (2003) Watches: mechanical materials. In: Buschow KHJ (ed) Encyclopedia of materials: science and technology, 2nd edn. Elsevier, Oxford, pp 1–17

    Google Scholar 

  4. García-Lastra JM, Barriuso MT, Aramburu JA, Moreno M (2005) Origin of the different color of ruby and emerald. Phys Rev B 72:113104

    Article  CAS  Google Scholar 

  5. Boev B, Jovanovski G, Makreski P, Bermanec V (2005) Minerals from Macedonia. XV. Sivec mineral assemblage. Geologica Macedonica 19:39–56

    Google Scholar 

  6. Chandler DE, Majumdar ZK, Heiss GJ, Clegg RM (2006) Ruby crystal for demonstrating time- and frequency-domain methods of fluorescence lifetime measurements. J Fluoresc 16:793–807

    Article  CAS  PubMed  Google Scholar 

  7. Gaudry É, Sainctavit P, Juillot F, Bondioli F, Ohresser P, Letard I (2006) From the green color of eskolaite to the red color of ruby: an X-ray absorption spectroscopy study. Phys Chem Minerals 32:710–720

    Article  CAS  Google Scholar 

  8. Garnier V, Maluski H, Giuliani G, Ohnenstetter D, Schwarz D (2006) Ar-Ar and U-Pb ages of marble-hosted ruby deposits from central and southeast Asia. Can J Earth Sci 43:509–532

    Article  CAS  Google Scholar 

  9. Garnier V, Giuliani G, Ohnenstetter D, Fallick AE, Dubessy J, Banks D, Vinh HQ, Lhomme T, Maluski H, Pêcher A, Bakhsh KA, Long PV, Trinh PT, Schwarz D (2008) Marble-hosted ruby deposits from Central and Southeast Asia: towards a new genetic model. Ore Geol Rev 34:169–191

    Article  Google Scholar 

  10. Simonet C, Fritsch E, Lasnier B (2008) A classification of gem corundum deposits aimed towards gem exploration. Ore Geol Rev 34:127–133

    Article  Google Scholar 

  11. Shor R, Weldon R (2009) Ruby and sapphire production and distribution: a quarter century of change. Gems Gemol 45:236–259

    Article  Google Scholar 

  12. Jovanovski G, Boev B, Makreski P (2012) Minerals from the Republic of Macedonia with an introduction to mineralogy. Macedonian Academy of Sciences and Arts, Skopje

    Google Scholar 

  13. Bristow JK, Parker SC, Catlow CRA, Woodley SM, Walsh A (2013) Microscopic origin of the optical processes in blue sapphire. Chem Commun 49:5259–5261

    Article  CAS  Google Scholar 

  14. Sangwal K (2013) Czochralski method of crystal growth in the scientific literature: an informetric study. Acta Phys Pol 124:173–180

    Article  CAS  Google Scholar 

  15. Reddy SL, Endo T, Reddy GS (2012) Electronic (absorption) spectra of 3d transition metal complexes. In: Farrukh MA (ed) Advanced aspects of spectroscopy. InTech, Rijeka, pp 1–48

    Google Scholar 

  16. Rakotosamizanany S, Giuliani G, Ohnenstetter D, Rakotondrazafy AFM, Fallick AE, Paquette J-L, Tiepolo M (2014) Chemical and oxygen isotopic compositions, age and origin of gem corundums in Madagascar alkali basalts. J Afr Earth Sci 94:156–170

    Article  CAS  Google Scholar 

  17. Bristow JK, Tiana D, Parker SC, Walsh A (2014) Defect chemistry of Ti and Fe impurities and aggregates in Al2O3. J Mater Chem A 2:6198–6208

    Article  CAS  Google Scholar 

  18. Doménech-Carbó A (2015) Dating: an analytical task. ChemTexts 1:5

    Article  Google Scholar 

  19. Vysotskiy SV, Nechaev VP, Kissin AYu, Yakovenko VV, Ignat’ev AV, Velivetskaya TA, Sutherland FL, Agoshkov AI (2015) Oxygen isotopic composition as an indicator of ruby and sapphire origin: a review of Russian occurrences. Ore Geol Rev 68:164–170

    Article  Google Scholar 

  20. Jeršek M (2015) Diasporescence in rubies from Prilep dolomitic marble. Maced J Chem Chem Eng 34:139–143

    Article  Google Scholar 

  21. Wongrawang P, Monarumit N, Thammajak N, Wathanakul P, Wongkokua W (2016) Oxidation states of Fe and Ti in blue sapphire. Mater Res Express 3:026201-1-026201–7

    Article  CAS  Google Scholar 

  22. Balmer WA, Hauzenberger CA, Fritz H (2017) Marble-hosted ruby deposits of the Morogoro Region, Tanzania. J Afr Earth Sci 134:626–643

    Article  CAS  Google Scholar 

  23. Huges R, Manorotkul W, Huges EB (2017) Ruby & sapphire: a gemologist’s guide. RWH/Lotus, Bangkok

    Google Scholar 

  24. Hunault MOJY, Harada Y, Miyawaki J, Wang J, Meijerink A, de Groot FMF, van Schooneveld MM (2018) Direct observation of Cr3+ 3d states in ruby: toward experimental mechanistic evidence of metal chemistry. J Phys Chem A 122:4399–4413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu J, He X, Lu Z (2019) Cause analysis of chatoyancy of sapphires from Shandong, China. RSC Adv 9:24420–24427

    Article  CAS  Google Scholar 

  26. Promwongnan S, Sutthirat C (2019) Mineral inclusions in ruby and sapphire from the Bo Welu Gem Deposit in Chanthaburi, Thailand. Gems Gemol 55:354–369

    Article  Google Scholar 

  27. Palke AC (2020) Coexisting rubies and blue sapphires from major world deposits: a brief review of their mineralogical properties. Minerals 10(472):1–20

    Google Scholar 

  28. Dubinski EV, Stone-Sundberg J, Emmett JL (2020) A quantitative description of the causes of color in corundum. Gems Gemol 56:2–28

    Article  Google Scholar 

  29. Giuliani G, Ohnenstetter D, Garnier V, Fallick AE, Rakotondrazafy AFM, Schwarz D (2007) The geology and genesis of gem corundum deposits. In: Groat LA (ed) Geology of gem deposits, 1st ed. Mineralogical Association of Canada, Short Course Series 37, Yellowknife, Canada, pp 23–78

  30. Giuliani G, Fallick A, Rakatondrazafy M, Ohnenstetter D, Andriamamonjy A, Ralantarison TH, Offant Y, Garnier V, Dunbigre CH, Schwarz D (2007) Oxygen isotope systematics of gem corundum deposits in Madagascar. Miner Depos 42:251–270

    Article  CAS  Google Scholar 

  31. Giuliani G. Ohnenstetter D, Fallick AE, Groat L, Fagan AJ (2014) The geology and genesis of gem corundum deposits. In: Groat LA (ed) Geology of gem deposits, 2nd ed. Mineralogical Association of Canada Short Course, Quebec, vol 44, pp 29–112

  32. Giuliani G, Groat A (2019) Geology of corundum and emerald gem deposits: a review. Gems Gemol 55:464–489

    Article  CAS  Google Scholar 

  33. Giuliani G, Groat LA, Fallick AE, Pignatelli I, Pardieu V (2020) Ruby deposits: a review and geological classification. Minerals 10(597):1–83

    Google Scholar 

  34. Wagner G (1995) Altersbestimmung von jungen Gesteinen und Artefakten. Enke Verlag, Stuttgart

    Google Scholar 

  35. Aitken MJ (1990) Science-based dating in archaeology, chapter 1. Longman, New York

    Google Scholar 

  36. Graham I, Sutherland L, Zaw K, Nechaev V, Khanchuk A (2008) Advances in our understanding of the gem corundum deposits of the West Pacific continental margins intraplate basaltic fields. Ore Geol Rev 34:200–215

    Article  Google Scholar 

  37. Kröner A (1984) Late Precambrian plate tectonics and orogeny: a need to redefine the term Pan-African. In: Klerkx J, Michot J (eds) African geology. Musée Royal de l’Afrique Centrale, Tervuren, pp 23–28

    Google Scholar 

  38. Hughes RW (1997) Ruby and sapphire. RWH, Boulder, p 512

    Google Scholar 

  39. Vertriest W, Girma D, Wongrawang P, Atikarnsakul U, Schumacher K (2019) Land of origins: a gemological expedition to Ethiopia. Gems Gemol 55:72–88

    Article  Google Scholar 

  40. Kissin AJ (1994) Ruby and sapphire from the Southern Ural Mountains, Russia. Gems Gemol 30:243–252

    Article  Google Scholar 

  41. Spiridonov EM (1998) Gemstone deposits of the former Soviet Union. J Gemmol 26:111–124

    Article  CAS  Google Scholar 

  42. Kolstov AB (2002) Ruby-bearing metasomatites in marbles: conditions and numerical mode of formation. Exp Geosci 10:94–96

    Google Scholar 

  43. Garnier V (2003) Les gisements de rubis associés aux marbres de l’Asie Centrale et du Sud-est: genèse et caractérisation isotopique. Thèse de Doctorat INPL, Nancy

    Google Scholar 

  44. Mercier A, Debat P, Saul JM (1999) Exotic origin of the ruby deposits of the Mangari area in SE Kenya. Ore Geol Rev 14:83–104

    Article  Google Scholar 

  45. Eppler WF (1989) Praktische Gemmologie. Rühle-Diebner-Verlag, Stuttgart

    Google Scholar 

  46. Klein C (2002) Mineral science. Wiley, New York

    Google Scholar 

  47. Kirfel A, Eichhorn K (1990) Accurate structure analysis with synchrotron radiation. The electron density in Al2O3 and Cu2O. Acta Crystallogr Part A 46:271–284

    Article  Google Scholar 

  48. Finger LW, Hazen RM (1978) Crystal structure and compression of ruby to 46 kbar. J Appl Phys 49:5823–5826

    Article  CAS  Google Scholar 

  49. Kostov I, Kostov IR (1999) Crystal habits of minerals. Prof. Marin Drinov Academic Publishing House & Pensoft Publishers, Sofia

    Google Scholar 

  50. Schmetzer K (1986) Natürliche und sythetische Rubine. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  51. Jeršek M, Mirtič B (1999) Corundum from Prilep dolomitic marble (Macedonia). Scopolia 41:1–22

    Google Scholar 

  52. Žorž M, Jeršek M, Mladenovski G (1999) Nekatera nahajališča mineralov v Makedoniji in njihova parageneza (Some mineral locations in Macedonia and their paragenesis). In: Gogala M (ed) Skrita bogastva Makedonije (Hidden treasures of Macedonia). Scopolia, Suppl. 2, pp 9‒63 (in Slovenian and English)

  53. Crichton RR (2012) Basic coordination chemistry for biologists. Biological inorganic chemistry: a new introduction to molecular structure and function, 2nd edn. Elsevier, Amsterdam, pp 21–34

    Chapter  Google Scholar 

  54. Burns RG (1993) Outline of crystal field theory. Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge, pp 7–43

    Chapter  Google Scholar 

  55. Moss SC, Newnham RE (1964) The chromium position in ruby. Z Kristallogr 120:359–363

    Article  CAS  Google Scholar 

  56. Fritsch E, Rossman GR (1987) An update on color in gems. Part 1: introduction and colors caused by dispersed metal ions. Gems Gemol 23:126–139

    Article  Google Scholar 

  57. Fritsch E, Rossman GR (1988) An update on color in gems. Part 2: colors involving multiple atoms and color centers. Gems Gemol 24:3–15

    Article  CAS  Google Scholar 

  58. Emmett JL, Dubinsky EV, Hughes RW, Scarratt K (2017) Color, spectra & luminescence. In: Hughes RW (ed) Ruby & sapphire: a gemologist’s guide. RWH/Lotus, Bangkok, pp 107–163

  59. Emmett JL, Stone-Sundberg J, Guan Y, Sun Z (2017) The role of silicon in the color of gem corundum. Gems Gemol 53:42–47

    Article  CAS  Google Scholar 

  60. Stone-Sundberg J, Thomas T, Sun Z, Guan Y, Cole Z, Equall R, Emmett JL (2017) Accurate reporting of key trace elements in ruby and sapphire using matrix-matched standards. Gems Gemol 53:438–451

    Article  Google Scholar 

  61. Burns RG (1981) Intervalence transitions in mixed-valence minerals of iron and titanium. Ann Rev Earth Planet Sci 9:345–383

    Article  CAS  Google Scholar 

  62. Moon AR, Phillips MR (1994) Defect clustering and color in Fe,Ti: α-Al2O3. J Am Ceram Soc 77:356–367

    Article  CAS  Google Scholar 

  63. Harlow GE, Bender W (2013) A study of ruby (corundum) compositions from the Mogok Belt, Myanmar: searching for chemical fingerprints. Am Mineral 98:1120–1132

    Article  CAS  Google Scholar 

  64. Zaw K, Sutherland L, Yui T-F, Meffre S, Thu K (2015) Vanadium-rich ruby and sapphire within Mogok Gemfield, Myanmar: implications for gem color and genesis. Miner Deposita 50:25–39

    Article  CAS  Google Scholar 

  65. Nassau K (2001) The physics and chemistry of colour, 2nd edn. Wiley, New York

    Google Scholar 

  66. Kvapil J, Perner B, Sulovsky J, Kvapil J (1973) Colour centre formation in corundum doped with divalent ions. Krist Tech 8:247–251

    Article  CAS  Google Scholar 

  67. Emmett JL, Scarratt K, McClure SF, Moses T, Douthit TR, Hughes R, Novak S, Shigley JE, Wang W, Bordelon O, Kane R (2003) Beryllium diffusion of ruby and sapphire. Gems Gemol 39:84–135

    Article  Google Scholar 

  68. Kröger FA (1984) Defect related properties of doped alumina. Solid State Ionics 12:189–199

    Article  Google Scholar 

  69. Schmetzer K (1981) The colour of natural corundum. Neues Jahrb Mineral Monatsh 2:59–68

    Google Scholar 

  70. Schmetzer K, Bosshart G, Hänni HA (1983) Naturally-coloured and treated yellow and orange-brown sapphires. J Gemmol 18:607–622

    Article  CAS  Google Scholar 

  71. Boiko BB, Shkadarevich AP, Zhdanov ÉA, Kalosha I, Koptev VG, Demidovich AA (1987) Lasing due to color centers in an Al2O3:Mg crystal. Sov J Quantum Electron 17:581–582

    Article  Google Scholar 

  72. Emmett JL, Douthit TR (1993) Heat treating the sapphires of Rock Creek Montana. Gems Gemol 29:250–272

    Article  Google Scholar 

  73. Häger T (2001) High temperature treatment of natural corundum. In: Hofmeister E, Dao NQ, Quang VX (eds) Proceedings of the international workshop on material characterization by solid state spectroscopy: the minerals of Vietnam, Hanoi, pp 24–37

  74. Long PV, Vinh HQ, Gamier V, Giuliani G, Ohnenstetter D, Lhomme T, Schwarz D, Fallick A, Dubessy J, Trinh PT (2004) Gem corundum deposits in Vietnam. J Petrol 29:129–148

    Google Scholar 

  75. Pala International. Questions about treated sapphires from Thailand. http://www.palagems.com/bulk-diffusion-sapphire. Accessed 27 Mar 2021

  76. Shtukenberg A, Punin YO (2007) Crystal optics. In: Kahr B (ed) Optically anomalous crystals. Springer, Dordrecht, pp 1–34

    Google Scholar 

  77. Mineralogical Society of America. Mohs' scale of hardness. http://www.minsocam.org/msa/collectors_corner/article/mohs.htm. Accessed 27 Mar 2021

  78. Bauer M (1968) Precious stones, vol II. Dover, New York

    Google Scholar 

  79. Gem reference guide (1995) Gemological Institute of America, Santa Monica

  80. Edinburgh Instruments. What is a Jablonski diagram (Perrin-Jablonski diagram)? https://www.edinst.com/us/blog/jablonski-diagram/. Accessed 27 Mar 2021

  81. Henn U (1990) Gemmologisches Praktikum, eine Sonderveröffentlichung von Gold + Silber + Uhren + Schmuck. Robert Kohlhammer GmbH, Leinfelden-Echterdingen

    Google Scholar 

  82. Robertson ADC, Sutherland FJ (1992) Possible origins and ages for sapphire and diamond from the central Queensland gemfields. Rec Austral Museum Suppl 15:45–54

    Article  Google Scholar 

  83. Upton B, Hinton RW, Aspen P, Finch A, Valley JW (1999) Megacrysts and associated xenoliths, evidence for migration of geochemically enriched melts in the upper mantle beneath Scotland. J Petrol 40:935–956

    Article  CAS  Google Scholar 

  84. Mondadory A (1991) Rocks and minerals. Macdonald, London

    Google Scholar 

  85. Mindat.org. http://www.mindat.org. Accessed 27 Mar 2021

  86. Barić Lj (1977) Im Weisen Marmor. Lapis 2:10–12

    Google Scholar 

  87. Stojanov R (1960) Prethodni rezultati od geološkite i petrografskite istražuvanja na visokometamornite steni vo centralniot del na Pelagonski masiv (Previous results of geological and petrographic investigations of high metamorphic rocks in the central part of Pelagonian massif). Geološki Zavod NRM 7:147–177 (in Macedonian)

    Google Scholar 

  88. Barić Lj (1969) Dolomitmarmor in der Umgebung der Stadt Prilep und die in ihm vorkommenden Minerale. Tscher Miner Petrog Mitt 13:233–249

    Article  Google Scholar 

  89. Žorž M, Vidrih R, Kobler G (1991) Minerali Prilepskega marmorja (Minerals in Prilep’s marbles). Proteus 53:243–251 (in Slovenian)

    Google Scholar 

  90. Barić Lj (1979) Diaspor, ein ungewöhnlich grosser kristall aus dem dolomit-steinbruch Sivec unweit von Prilep in Mazedonien. Jugoslawien Lapis 4:25

    Google Scholar 

  91. Henn U (1995) Edelsteinkundliches Praktikum. Deutsche Gemmologische Gesellschaft, Idar-Oberstein

    Google Scholar 

  92. Gübelin EJ (1982) Gemstones of Pakistan: emerald, ruby, and spinel. Gems Gemol 18:123–139

    Article  Google Scholar 

  93. Chualaowanich T, Sutthirat C, Pisuttha-Arnond V, Hauzenberger C, Chinghua L, Tongyi L, Charusiri P (2014) Geochemical characteristic and new eruption ages of ruby-related basalts from Southeast Kenya. J Earth Sci 25:799–821

    Article  CAS  Google Scholar 

  94. Henn U, Bank H, Bank-Scherner M (1990) Rubine aus der Pamir-Gebirge, UdSSSR. Z Dt Gemmolog Ges 4:201–205

    Google Scholar 

  95. Official Gazette of the Republic of North Macedonia, no. 23, 3rd February 2020. https://www.slvesnik.com.mk/Issues/be3a2aba254a4ed5a365076af3e596d0.pdf

  96. Nassau K (1994) Gemstone enhancement. Butterworth-Heineman, Oxford

    Google Scholar 

  97. Townsend MG (1968) Visible charge transfer band in blue sapphire. Solid State Commun 6:81–83

    Article  CAS  Google Scholar 

  98. Pignatelli I, Giuliani G, Ohnenstetter D, Agrosi G, Mathieu S, Moriot C, Brancquet Y (2015) Colombian trapiche emeralds: recent advances in understanding their formation. Gems Gemol 51:222–259

    Article  CAS  Google Scholar 

  99. Barić Lj (1960) Optische eingeschaften des diaspors von Sivec unweit von Prilep in Mazedonien (Optical properties of the diaspore from Sivec not far from Prilep in Macedonia). Bull Sci Conseil Acad RPF Yougoslavie 5:71

    Google Scholar 

  100. Barić Lj (1963) Über die orientirte verwachsung des diaspors und des korunds von Sivec in Mazedonien. Beitr zur Min u Petr 9:133–138

    Google Scholar 

  101. Matlins AL, Bonanio AC (1989) Gem identification made easy. Gemstone, South Woodstock

    Google Scholar 

  102. Tomaszewski PE (1998) Professor Jan Czochralski (1885–1953) and his contribution to the art and science of crystal growth. AACG Newslett 27:12–18

    Google Scholar 

  103. Nassau K (1972) Dr. A.V. L. Verneuil: the man and the method. J Cryst Growth 13/14:12–18

  104. King HM. Corundum. https://geology.com/minerals/corundum.shtml. Accessed 27 Mar 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gligor Jovanovski or Petre Makreski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeršek, M., Jovanovski, G., Boev, B. et al. Intriguing minerals: corundum in the world of rubies and sapphires with special attention to Macedonian rubies. ChemTexts 7, 19 (2021). https://doi.org/10.1007/s40828-021-00143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-021-00143-0

Keywords

Navigation