Skip to main content
Log in

Hydrothermal processes in industry

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

Hydrothermal processes played a substantial role in ore and mineral formation. They have been used industrially since the nineteenth century. Examples include crystal synthesis, digestion of raw materials, hydrometallurgy under pressure, hardening and synthesis of building materials and execution of chemical processes. Undesired hydrothermal processes play a role in the corrosion of thermal power plants and the aging of catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Trumbull R, Emmermann R, Möller P, Tischendorf G (1994) Magnetism and metallogeny in the Erzgebirge. Geowissenschaften 12:337–341. https://doi.org/10.2312/GEOWISSENSCHAFTEN.1994.12.337(retrieved03-09-2020)

    Article  Google Scholar 

  2. Neukamm M (2015) Die Entstehung des Lebens - am Anfang waren heiße Gesteinsporen (The origin of life - in the beginning there were hot rock pores) http://ag-evolutionsbiologie.net/html/2015/entstehung-leben-gesteinsporen.html (retrieved 07–19–2019) [in German]

  3. Rabenau A (1985) The role of hydrothermal synthesis in preparative chemistry. Angew Chem 24:1026–1040. https://doi.org/10.1002/anie.198510261(retrieved 03-09-2020)

    Article  Google Scholar 

  4. Byrappa K, Masahiro Yoshimura (2001) Handbook of Hydrothermal Technology (Norwich, New York: Noyes Publications https://books.google.de/books?id=-rYel1Q2HB8C&pg=PA53&redir_esc=y#v=onepage&q&f=false (retrieved 03–09–2020)

  5. Somiya S, Roy R (2000) Hydrothermal synthesis of fine oxide powders. Bull Mater Sci 23:453–460 http://www.eng.uc.edu/~beaucag/Classes/Nanopowders/Roy%2520on%2520Hydrothermal%2520Synthesis.pdf (retrieved 03–09–2020)

  6. Hydrothermalsynthese (Hydrothermal synthesis) https://www.spektrum.de/lexikon/chemie/hydrothermalsynthese/4268 (retrieved 07–19–2019) [in German]

  7. Hydrothermalsynthese (Hydrothermal synthesis) https://www.spektrum.de/lexikon/geowissenschaften/hydrothermalsynthese/ 7282 (retrieved 07–19–2019) [in German]

  8. Mertzsch N (2019) Hydrothermale Prozesse in Natur und Technik (Hydrothermal processes in nature and technology), Leibniz Online, year 2019, No. 37, URL: https://leibnizsozietaet.de/wp-content/uploads/2019/11/Portfolio-LO-37-2019.pdf (retrieved 03–09–2020) [in German]

  9. Schlegel E (1982) Grundlagen technischer hydrothermaler Prozesse (Basics of technical hydrothermal processes). Freiberger Forschungshefte, A655 Grundstoff-Verfahrenstechnik, Silikattechnik, 1982[in German]

  10. Bosholm J (1984) in Winkler, R.; Schneider, W.; Bosholm, J.; Köhler, S.; Vollrath, S.; Zillmer, H.-G.; Herold, C. (1984): Chemie in Kraftwerken (Chemistry in power plants). VEB Deutscher Verlag für Grundstoffindustrie Leipzig, p 44–90 [in German]

  11. https://upload.wikimedia.org/wikipedia/commons/thumb/3/33/Phase_diagram_of_water_simplified.svg/1280px-Phase_diagram_of_water_simplified.svg.png (retrieved 03–09–2020)

  12. Schmalzried H (1973) Festkörperreaktionen Chemie des festen Zustandes (Solid-state reactions Solid state chemistry). Akademie-Verlag Berlin, p 88 (Schmalzried H (1974) Solid state reactions, Verlag Chemie Weinheim/Bergstr., Academic Press New York) [in German]

  13. Ved EI, Zharov E (1971) К вoпpocy oбpaзвaния шпинeли (MgAl2O4) в гидpoтepмaльныx ycлoвияx - k voprosu obrazvanija shpineli (MgAl2O4) v gidrothermalnyh uslovijah (The question of the formation of spinel (MgAl2O4) under hydrothermal conditions) Ukrain Chim Žurnal. 37:1017–1019 [in Russian]

  14. Mertzsch N (1983) Untersuchungen zum Alterungsverhalten von Kohlenmonoxid-Tieftemperatur-Konvertierungskatalysatoren des ternären Systems CuO/ZnO/Al2O3 (Studies on the aging behavior of low-temperature carbon monoxide. Conversion catalysts of the ternary system CuO/ZnO/Al2O3),PhD thesis, University Halle, Halle/Saale; S. 83 [in German]

  15. Schwingquarz (2019): https://de.wikipedia.org/wiki/Schwingquarz (retrieved 07–19–2019) [in German]

  16. Grundwell FK (2017): ACS Omega 2017, 2, 1116−1127, http://pubs.acs.org/journal/acsodf© 2017 American Chemical Society 1116 DOI: https://doi.org/10.1021/acsomega.7b00019 ACS Omega(retrieved 03–09–2020)

  17. SHANDONG SINOCERA FUNCTIONAL MATERIAL CO., LTD (2020): http://en.sinocera.cn/product/12.html (retrieved 05–24–2020)

  18. Chen H-J, Chen Y-W (2003): Hydrothermalsynthesis of Barium Titanate. Industrial & Engineering Chemistry Research 2003, 42, 3, 473–483. https://pubs.acs.org/doi/pdf/10.1021/ie010796q (retrieved 05–24–2020)

  19. Eckert JO Jr, Hung-Houston CC, Gersten BL, Lencka MM (1996) Kinetics and Mechanisms Of Hydrothermal Synthesis Of Barium Titanate. J Am Ceram Soc 79(1):2929–2939. https://doi.org/10.1111/j.1151-2916.1996.tb08728.x(retrieved05-24-2020)

    Article  CAS  Google Scholar 

  20. Fuchs J N (1834): Ueber ein neues Mineral (Triphylin) (About a new mineral (Triphylin)). Journal für Praktische Chemie. 1834, 3, S. 98–104, https://onlinelibrary.wiley.com/doi/abs/10.1002/prac.18340030120 (retrieved 05–24–2020) [in German]

  21. Padhi A K, Nanjundaswamy K S, Goodenough J B (1997): Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc., Vol. 144, No. 4, April 1997 https://iopscience.iop.org/article/10.1149/1.1837571/pdf (retrieved 05–24–2020)

  22. Lithiumeisenphosphat (2020): https://de.wikipedia.org/wiki/Lithiumeisenphosphat (retrieved 05–24–2020)

  23. Nuspl G, Wimmer L, Eisgruber M (2013): Lithiumeisenphosphat, Verfahren zu seiner Herstellung und seine Verwendung als Elektrodenmaterial (Lithium iron phosphate, process for its preparation andits use as an electrode material). DE10353266B4. https://patents.google.com/patent/DE10353266B4/de (retrieved 05–24–2020) [in German]

  24. Loos S (2015): Olivin-Typ Lithiumeisenphosphat (Li1-xFePO4) - Synthese, Li-Ionentransport undThermodynamik (Olivine-type lithium iron phosphate (Li1-xFePO4) - synthesis, Li-ion transport and thermodynamics). Dissertation, Technischen Universität Bergakademie Freiberg https://tubaf.qucosa.de/api/qucosa%3A22966/attachment/ATT-0/ (retrieved 05–24–2020) [in German]

  25. Habashi F(1995) Bayer's process for alumina production: A historical perspective. Bull. Hist. Chem. 17/18 (1995) 15–19 http://acshist.scs.illinois.edu/bulletin_open_access/FullIssues/17-18-ocr-opt.pdf (retrieved 03–09–2020)

  26. Kopeliovich D (2012) Bayer Process. http://www.substech.com/dokuwiki/doku.php?id=bayer_process (retrieved 03–09–2020)

  27. Mackiw V N, Benz TW, Evans D J I (1962): Hydrometallurgie unter Anwendung von Druck (Hydrometallurgy using pressure). Chemie- Ingenieur-Technik, 1962, Volume 34(6), 441–445 https://www.onlinelibrary.wiley.com/doi/10.1002/cite.330340609 (retrieved 05–24–2020) [in German]

  28. Habashi F (2014): A new era in pressure hydrometallurgy. Metall. 68. 27–34. https://www.researchgate.net/publication/288209801_A_new_era_in_pressure_hydrometallurgy (retrieved 05–24–2020)

  29. Berezowsky R M G S, Collins M J, Kerfoot D G E, Torres N (1991): The commercial status of pressure leaching technology. JOM 1991, Volume 43, 9–15. https://link.springer.com/article/10.1007/BF03220132 (retrieved 05–24–2020)

  30. SGS (2013): SGS MINERALS SERVICES – T3 SGS 174 09–2013. https://www.sgs.com/-/media/global/documents/flyers-and-leaflets/sgs-min-wa053-pressure-leaching-en-11.pdf (retrieved 05–24–2020)

  31. Weir D R, Masters I M, (1991): Verfahren zur Zinkgewinnung aus zinkhaltigem sulfidischen Material(Process for extracting zinc from zinc-containing sulfidic material ).DE3306506C2. http://www.patent-de.com/19910307/DE3306506C2.html (retrieved 05–24–2020) [in German]

  32. Ucyildiz A, Girgin I (2017): HIGH PRESSURE SULPHURIC ACID LEACHING OF LATERITIC NICKEL ORE. Physicochem. Probl. Miner. Process. 53(1), 2017, 475–488. http://www.minproc.pwr.wroc.pl/journal/pdf/ppmp53-1.475-488.pdf (retrieved 05–24–2020)

  33. Stopić R S, Friedrich B G (2011): Pressure hydromtallurgy—a new chance to non- polluting processes. VOJNOTECHNIČKI GLASNIK (MILITARY TECHNICAL COURIER), 2011, Vol. LIX, No. 3, 29–44. https://scindeks-clanci.ceon.rs/data/pdf/0042-8469/2011/0042-84691103029S.pdf (retrieved 05–24–2020)

  34. Havlik T, Friedrich B, Stopić S (2004): Pressure Leaching of EAF Dust with Sulphuric Acid. World of Metallurgy – ERZMETALL 57 (2004) No. 2, 113–120. http://www.metallurgie.rwth-aachen.de/new/images/pages/publikationen/havlik_erzmetall_57_id_9401.pdf (retrieved 05–24–2020)

  35. H+H Deutschland GmbH (2019): Hergestellt streng nach Reinheitsgebot (Manufactured strictly according to the purity law). https://www.hplush.de/de/kalksandstein/herstellung (retrieved 07–19–2019) [in German]

  36. Büttner B, Diestelmeier B, Grethe W, Herz R, Roschkowski O, Schäfers M, Schlundt A, Schmid P, Schulze H, Schumann NJ, Worthmann DC (2018) Kalksandsteinplanungshandbuch (Limestone planning manual), p 13–14. https://www.kalksandstein.de/bv_ksi/binaries/content/59667/file_planungshandbuch_auflage7_gesch_de.pdf (downloaded on 07–19–2019) [in German]

  37. Middendorf E, Eden W (2011) „Kalksandsteine - auf das Mikrogefüge kommt es an“ ("Sand-lime bricks - it depends on the microstructure"). Die Aktuelle-Wochenschau© der GDCh – Bauen und Chemie 51/2011, URL: http://archiv.aktuelle-wochenschau.de/druck/2011/wochenschau51_2011.pdf (downloaded on07–19–2019) [in German]

  38. Flassenberg G, Lieback P, Homann M (2018) Porenbetonhandbuch (Aerated concrete manual),Berlin, p 9. https://www.bv-porenbeton.de/pdfs/handbuch/PB-HB_BVP_7-Auflage-2018_Kap1-Baustoff.pdf (downloaded on 07–19–2019) [in German]

  39. Kretschmer A (2019) Klimabilanz der Zementindustrie (Carbon footprint of the cement industry), https://www.chemietechnik.de/klimabilanz-der-zementindustrie/ (retrieved 07–19–2019)

  40. Stemmermann P, Schweike U, Garbev K, Beuchle G, Möller H (2010) Celitement—a sustainable prospect for the cement industry, CEMENT INTERNATIONAL 5/2010 8:53–67. http://www.celitement.de/fileadmin/user_upload/Downloads/2010-10-26_Celitement_a_sustainable_prospect_for_the_cement_industry.pdf (retrieved 07–19–2019)

  41. Celitement GmbH (2020): http://www.celitement.de/de/ueber-uns/ (retrieved 05–24–2020)

  42. Agora Energiewende and Wuppertal Institute (2019): Climate-Neutral Industry (Executive Summary):Key Technologies and Policy Options for Steel, Chemicals and Cement. Berlin, November 2019. https://www.agora-energiewende.de/fileadmin2/Projekte/2018/Dekarbonisierung_Industrie/168_A-EW_Climate-neutral-industry_EN_ExecSum_WEB.pdf (retrieved 05–24–2020)

  43. Hydrothermale Carbonisierung (2010): Gülzower Fachgespräche Band 33, Hydrothermale Carbonisierung (Hydrothermal carbonization), 2010. https://www.fnr-server.de/ftp/pdf/literatur/pdf_366-gf_33_hydrothermale.pdf (downloaded on 03–09–2020) [in German]

  44. Taublaender M J, Mezzavilla S, Thiele S, Glöcklhofer F, Unterlass M M (2020): Hydrothermal Generation of Conjugated Polymers Using the Example of Pyrrone Polymers and PolybenzimidazolesAngew. Chem. Int. Ed. 2020, 59, 2–13. https://www.onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202000367 (retrieved 05–24–2020)

  45. Muchlenov I P, Dobkina E I, Derjužkina V I, Soroko V E (1976) Technologie der Katalysatoren (Catalyst technology). VEB Deutscher Verlag für Grundstoffindustrie Leipzig, p 165–168 [in German]

  46. Zeolithe (1994): Zeolithe. Brockhaus-Enzyklopädie 24 Vols. Vol. 24, p 518–519 [in German]

  47. Zones I S, Makagawa Y (1995) Herstellung von Zeolithen unter Verwendung von organischem Templat und Amin (Preparation of zeolites using organic template and amine) DE69525860T2 27.06.2002. http://www.patent-de.com/20020627/DE69525860T2.html (retrieved 03–09–2020) [in German]

  48. Zones I S, Hwang S-J, Davis M E (2001) Studies of the Synthesis of SSZ-25 Zeolite in a "Mixed-Template" System. Chem. Eur. J. 2001, 7, No. 9, p 1990–2001. https://doi.org/10.1002/1521-3765(20010504)7:9%3C1990::AID-CHEM1990%3E3.0.CO;2-G (retrieved 03–09–2020)

  49. Bülow M (2015) Zeolith-Forschung am ZIPC der Akademie der Wissenschaften der DDR (Zeolite research at the ZIPC of the GDR Academy of Sciences). Leibniz Online, year 2015, No. 18, URL: http://leibnizsozietaet.de/wp-content/uploads/2015/03/buelow.pdf (retrieved 07–19–2019) [in German]

  50. Köhler S (1984) Korrosion und Korrosionsschutz (Corrosion and corrosion protection). In Winkler R, Schneider W, Bosholm, Köhler S, Vollrath S, Zillmer H.-G, Herold C. Chemie in Kraftwerken. VEB Deutscher Verlag für Grundstoffindustrie Leipzig, p 91–123 [in German]

  51. Tammann G (1920) Über Anlauffarben von Metallen (On tarnishing colors of metals). Z anorg u allg Chem 111:78–89. https://doi.org/10.1002/zaac.19201110107(retrieved03-09-2020) [inGerman]

    Article  Google Scholar 

  52. Bohnsack G (1987) The solubility of magnetite in water and in aqueous solutions of acid and alkali. Vulkan-Verlag Essen

  53. Bolz M, Speck A, Böttcher F, Riehm S (2013) Einfluss des Lastfolgebetriebs auf die Chemie der Primär- Und Sekundärkreislaufs eines Kernkraftwerks mit Druckwasserreaktor (Influence of load-following operation on the chemistry of the primary and secondary circuits of a nuclear power plant with a pressurized water reactor. atw 58(2013), issue 7, p 440–445, URL: https://www.kernd.eu/kernd-wAssets/docs/fachzeitschrift-atw/2013/atw2013_07_bolz_lastfolgebetrieb_dwr.pdf (retrieved 03–09–2020) [in German]

  54. Winkler R (1984) Induzierte Radioaktivität und radioaktive Ablagerungen (Induced radioactivity and radioactive deposits). In Winkler R, Schneider W, Bosholm J, Köhler S, Vollrath S, Zillmer H-G, Herold C. Chemie in Kraftwerken. VEB Deutscher Verlag für Grundstoffindustrie Leipzig, p 147–149 [in German]

  55. Faust S, Fleck I, Jendrich U, Michel F (2018) Untersuchungen zu sicherheitstechnisch bedeutsamen Aspekten bei der Dekontamination von Reaktorkühlkreisläufen in Kernkraftwerken (Investigations on safety-relevant aspects in the decontamination of reactor cooling circuits in nuclear power plants). GRS - 492, URL: https://www.grs.de/publikationen/grs-492 (retrieved 03–09–2020) [in German]

  56. Mertzsch N, Sonntag H, Wolf F, Renger P (1984) Über die Bildung von Gahnit in Kohlenmonoxid-Tieftemperaturkonvertierungskatalysatoren des ternären Systems CuO-ZnO-Al2O3 (About the formation of gahnite in carbon monoxide low temperature conversion catalysts of the ternary system CuO-ZnO-Al2O3). Chem. Techn., 36. year, issue 7, p 293–295 [in German]

  57. Mertzsch N, Jödicke G, Wolf F, Renger P (1984) Zur Wirkungsweise des Katalysatorgiftes Chlorid auf Kohlenmonoxid-Tieftemperaturkonvertierungskatalysatoren des ternären Systems CuO-ZnO-Al2O3 (How the catalyst poison chloride works on low-temperature carbon monoxide conversion catalysts of the ternary system CuO-ZnO-Al2O3). Chem. Techn., 36. year, issue 6, p 245–247 [in German]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Mertzsch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

My special thanks go to Hans-Joachim Lunk and Fritz Scholz for their numerous tips and suggestions when drafting this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mertzsch, N. Hydrothermal processes in industry. ChemTexts 6, 21 (2020). https://doi.org/10.1007/s40828-020-00116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-020-00116-9

Keywords

Navigation