Skip to main content
Log in

Research on Regeneration Technology for Gasoline Particulate Filters Using Microwave Heating

  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

The lower exhaust gas temperatures in hybrid vehicles can make it difficult to regenerate gasoline particulate filters (GPF). Filter regeneration technology using microwave (MW) heating has long been studied and for diesel particulate filter (DPF). In this study, a feasibility study was conducted to investigate the feasibility of filter regeneration by MW heating in a GPF, which has a different substrate material and catalyst material from DPFs. First, we demonstrated that particulate matter (PM) can be oxidized by MW heating with a test piece size GPF where heat transfer and MW intensity bias can be ignored. Next, we demonstrated that filter regeneration is possible even in the presence of heat dissipation and MW intensity bias using a full-size GPF, which is used in the market. These experiments showed that ambient temperature and MW power affect filter regeneration performance. On the other hand, when the filter was heated at high power to reduce the filter regeneration time, the PM oxidation caused thermal runaway, which resulted in high filter temperature and catalyst degradation. Furthermore, using numerical calculations, electromagnetic wave measurements, and visualization techniques, it was shown that the filter overheating was not caused by biased MW intensity, but by biased gas flow in the GPF due to biased GPF catalyst coatings and PM loading distribution. Finally, to achieve both thermal runaway prevention and filter regeneration performance, we proposed a filter regeneration strategy in which PM is oxidized with gradually increasing MW power; although thermal runaway prevention is possible, further improvement is needed in the future, since the results suggest that the filter regeneration time may increase. Based on the findings of this study, we believe that this MW heating-based GPF regeneration technology can contribute to carbon neutrality by overcoming the issue of the difficulty of regenerating GPF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. IPCC. Sixth Assessment Report, www.ipcc.ch/assessment-report/ar6 (2023 accessed 31 March 2023).

  2. NIES. National GHG Inventory Report of JAPAN, www.nies.go.jp/gio/en/ (2022 accessed 31 March 2023).

  3. TTILIT. Summary of the white paper on land, infrastructure, transport and tourism in Japan, www.mlit.go.jp/en/statistics/white-paper-mlit-index.html; (2022 accessed 31 March 2023).

  4. Liu, X.: Comparison of well-to-wheels energy use and emissions of a hydrogen fuel cell electric vehicle relative to a conventional gasoline-powered internal combustion engine vehicle. Int. J. Hydrog. Energy 45, 972–983 (2020). https://doi.org/10.1016/j.ijhydene.2019.10.192

    Article  CAS  Google Scholar 

  5. James BD, Huya-Kouadio JM, Houchins C, et al. Mass production cost estimation of direct H2 PEM fuel cell systems for transportation applications: 2018 update, www.energy.gov/eere/fuelcells/downloads/mass-production-cost-estimation-direct-h2-pem-fuel-cell-systems-3 (2018 accessed 31 March 2023).

  6. Bui, M., Adjiman, C.S., Bardow, A., et al.: Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11(5), 1062–1176 (2018). https://doi.org/10.1039/C7EE02342A

    Article  CAS  Google Scholar 

  7. Sanz-Pérez, E.S., Murdock, C.R., Didas, S.A., et al.: Direct capture of CO2 from ambient air. Chem. Rev. 116(19), 11840–11876 (2016). https://doi.org/10.1021/acs.chemrev.6b00173

    Article  CAS  Google Scholar 

  8. Keith, D.W., Holmes, G., St. Angelo, D., et al.: A process for capturing CO2 from the atmosphere. Joule 2(8), 1573–1594 (2018). https://doi.org/10.1016/j.joule.2018.05.006

    Article  CAS  Google Scholar 

  9. Song, L., Christian, S.D., Yue-Biao, Z., et al.: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349(6253), 1208–1213 (2015). https://doi.org/10.1126/science.aac8343

    Article  CAS  Google Scholar 

  10. Kuhl, K.P., Cave, E.R., Abram, D.N., et al.: New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5(5), 7050–7059 (2012). https://doi.org/10.1039/C2EE21234J

    Article  CAS  Google Scholar 

  11. Manuel, G., Jonathan, L., Friedemann, M., et al.: Renewable power-to-gas: a technological and economic review. Renew Energy 85, 1371–1390 (2016). https://doi.org/10.1016/j.renene.2015.07.066

    Article  CAS  Google Scholar 

  12. Yoshio, H., Hidetoshi, W., Toshio, T., et al.: Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39(12), 1833–1839 (1994). https://doi.org/10.1016/0013-4686(94)85172-7

    Article  Google Scholar 

  13. Kortlever, R., Shen, J., Schouten, K.J.P., et al.: Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6(20), 4073–4082 (2015). https://doi.org/10.1021/acs.jpclett.5b01559

    Article  CAS  Google Scholar 

  14. Ricardo, S.B., Covadonga, A.: Impact of cold temperature on Euro 6 passenger car emissions. Environ. Pollut. 234, 318–329 (2018). https://doi.org/10.1016/j.envpol.2017.10.096

    Article  CAS  Google Scholar 

  15. Maricq, M.M.: Engine, aftertreatment, fuel quality and non-tailpipe achievements to lower gasoline vehicle PM emissions: literature review and future prospects. Sci. Total Environ. 866, 161225 (2023). https://doi.org/10.1016/j.scitotenv.2022.161225

    Article  CAS  Google Scholar 

  16. Wooldridge, M.S., Singh, R., Gutierrez, L.G., Clancy, S.: Survey of strategies to reduce cold-start particulate, CO, NOx, and hydrocarbon emissions from direct-injection spark-ignition engines. Int. J. Engine Res. 24(2), 456–480 (2023). https://doi.org/10.1177/14680874211068576

    Article  CAS  Google Scholar 

  17. Li, Z., Shen, B., Zhang, Y., et al.: Simulation of deep-bed filtration of a gasoline particulate filter with inhomogeneous wall structure under different particle size distributions. Int. J. Engine Res. 22(7), 2107–2118 (2021). https://doi.org/10.1177/1468087421992216

    Article  CAS  Google Scholar 

  18. Bin, Z., Xuewei, L., Qin, W., et al.: Hydrocarbon emission control of an adsorptive catalytic gasoline particulate filter during cold-start period of the gasoline engine. Energy. 262(A), 125445 (2023). https://doi.org/10.1016/j.energy.2022.125445

    Article  CAS  Google Scholar 

  19. Demuynck J, Mendoza VP, Bosteels D, et al.  Advanced emission controls and e-fuels on a gasoline car for zero-impact emissions. SAE Int. J. Adv. & Curr. Prac. in Mobility 5(3), 1063–1069 (2022). https://doi.org/10.4271/2022-01-1014

  20. Jianbing, G., Guohong, T., Aldo, S., et al.: Review of thermal management of catalytic converters to decrease engine emissions during cold start and warm up. Appl. Therm. Eng. 147, 177–187 (2019). https://doi.org/10.1016/j.applthermaleng.2018.10.037

    Article  CAS  Google Scholar 

  21. Chunrun. Z., Jiayi, M., Jiahua, C., Lunhui, L., et al.:  Studies on regeneration of diesel exhaust particulate filters by microwave energy. SAE Tech Paper 941774 (1994). https://doi.org/10.4271/941774

  22. Frank BW, Peter JH, David JW Controlled energy deposition in diesel particulate filters during regeneration by means of MW irradiation. SAE Technical Paper. 900327. (1990). https://doi.org/10.4271/900327

  23. Zhang C, Min J, Chen J, et al. Studies on regeneration of diesel exhaust particulate filters by MW energy. SAE. Tech. Paper. 941774 (1994). https://doi.org/10.4271/941774

  24. Ning Z, Zhang G, Lu Y, et al. Analysis of characteristic of MW Regeneration for diesel particulate filter. SAE Tech. Paper. 952058 (1995). https://doi.org/10.4271/952058

  25. Jianxin, M., Ming, F., Ping, L., et al.: MW-assisted catalytic combustion of diesel soot. Appl Catals A 159(1–2), 211–228 (1997). https://doi.org/10.1016/S0926-860X(97)00043-4

    Article  Google Scholar 

  26. Richard DN, Johney BG, John MS, et al. MW-regenerated diesel exhaust particulate filter. SAE. Tech. Paper 2001–01–0903 (2001). https://doi.org/10.4271/2001-01-0903

  27. Hongmei, A., Caitlin, K., Paul, J.M.: An examination of MW heating to enhance diesel soot combustion. Thermochim. Acta 435(1), 57–63 (2005). https://doi.org/10.1016/j.tca.2005.02.035

    Article  CAS  Google Scholar 

  28. Vincenzo P, Paola R, Giuseppa M, et al. Soot abatement improvement by MW programmed regeneration of Fe/V/K-SiC foam. SAE. Tech. Paper 2005–24–098 (2005). https://doi.org/10.4271/2005-24-098

  29. Kong, J., Henrichsen, M., Shih, A.J.: Infrared thermometry measurement of temperature distribution in the MW regeneration of diesel particulate filters. Int. J. Engine Res. 6(1), 61–71 (2005). https://doi.org/10.1243/146808705X7275

    Article  Google Scholar 

  30. Sameer, P., Tae-Hoon, K., Dan, R., et al.: Active regeneration of diesel particulate filter employing MW heating. Ind. Eng. Chem. Res. 48(1), 69–79 (2009). https://doi.org/10.1021/ie800780g

    Article  CAS  Google Scholar 

  31. Palma, V., Ciambelli, P., Meloni, E.: Influence of operative parameters on MW regeneration of catalytic soot Wff for diesel engines. Chem. Eng. Trans. 25, 1001–1006 (2011). https://doi.org/10.3303/CET1125167

    Article  Google Scholar 

  32. Palma, V., Ciambelli, P., Meloni, E.: Optimising the catalyst load for MW susceptible catalysed DPF. Chem. Eng. Trans. 29, 637–642 (2012). https://doi.org/10.3303/CET1229107

    Article  Google Scholar 

  33. Palma, V., Ciambelli, P., Meloni, E.: Catalyst load optimization for MW susceptible catalysed DPF. Chem. Eng. Trans. 32, 799–804 (2013). https://doi.org/10.3303/CET1332134

    Article  Google Scholar 

  34. Vincenzo, P., Paolo, C., Eugenio, M., et al.: Study of the catalyst load for a MW susceptible catalytic DPF. Catal. Today 216, 185–193 (2013). https://doi.org/10.1016/j.cattod.2013.07.012

    Article  CAS  Google Scholar 

  35. Vincenzo, P., Paolo, C., Eugenio, M., et al.: Catalytic DPF MW assisted active regeneration. Fuel 140, 50–61 (2015). https://doi.org/10.1016/j.fuel.2014.09.051

    Article  CAS  Google Scholar 

  36. Lee, C.C., Noboru, Y., Shoji, T.: Porous glass composite as diesel particulate filter and the MW regeneration. Adv Mater Res 936, 2050–2053 (2014). https://doi.org/10.4028/www.scientific.net/amr.936.2050

    Article  CAS  Google Scholar 

  37. Yoshikawa N, Chuan LC, Inoue N, et al. Porous ceramic/metal composite body For Dpf (diesel particulate filter) and the MW heating behavior. Adv Ceram Environ. Funct. Struct. Energy Appl. (2018). https://doi.org/10.1002/9781119543299.ch9

  38. Palma, V., Meloni, E., Ciambelli, P.: Optimal loading of a MW susceptible catalysed DPF. Chem. Eng. Trans. 43, 2035–2040 (2015). https://doi.org/10.3303/CET1543340

    Article  Google Scholar 

  39. Palma, V., Meloni, E.: MW susceptible catalytic diesel particulate filter. Chem. Eng. Trans. 52, 445–450 (2016). https://doi.org/10.3303/CET1652075

    Article  Google Scholar 

  40. Vincenzo, P., Eugenio, M.: MW assisted regeneration of a catalytic diesel soot trap. Fuel 181, 421–429 (2016). https://doi.org/10.1016/j.fuel.2016.05.016

    Article  CAS  Google Scholar 

  41. Meloni, E., Palma, V.: Improved MW susceptible catalytic diesel particulate filter, Chemical. Eng. Trans. 57, 445–450 (2017). https://doi.org/10.3303/CET1757139

    Article  Google Scholar 

  42. Meloni, E., Palma, V., Vaiano, V.: Optimized MW susceptible catalytic diesel soot trap. Fuel 205, 142–152 (2017). https://doi.org/10.1016/j.fuel.2017.05.074

    Article  CAS  Google Scholar 

  43. Bin, Z., Jiaqiang, E., Jinke, G., et al.: Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process. Appl. Energy 181, 14–28 (2016). https://doi.org/10.1016/j.apenergy.2016.08.051

    Article  CAS  Google Scholar 

  44. Liu, E.J., Deng, M., Zhu, Y., et al.: Influence analysis of monolith structure on regeneration temperature in the process of MW regeneration in the diesel particulate filter. Can. J. Chem. Eng. 94, 168–174 (2016). https://doi.org/10.1002/cjce.22366

    Article  CAS  Google Scholar 

  45. Kurien C, Srivastava AK. Active regeneration of diesel particulate filter using MW energy for exhaust emission control. Intelligent Communication, Control and Devices. Adv Intell Syst Comput 624 (2018). https://doi.org/10.1007/978-981-10-5903-2_129

  46. Caneon, K., Ajay, K.S., Salome, L.: Experimental and computational study on the MW energy based regeneration in diesel particulate filter for exhaust emission control. J. Energy Inst. 93(6), 2133–2147 (2020). https://doi.org/10.1016/j.joei.2020.05.008

    Article  CAS  Google Scholar 

  47. Kurien, C., Srivastava, AK., Anand K., et al. Modelling of MW-based regeneration in composite regeneration emission control system. Intelligent Communication, Control and Devices. Adv Intell Syst Comput 989 (2020). https://doi.org/10.1007/978-981-13-8618-3_33

  48. Jiaqiang, E., Xiaohuan, Z., Longfu, X., et al.: Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory. Energy 169, 719–729 (2019). https://doi.org/10.1016/j.energy.2018.12.086

  49. Jiaqiang, E., Panyue, Z., Dandan, H., et al.: Effects analysis on soot combustion performance enhancement in a rotary diesel particulate filter unit during continuous microwave heating. Fuel 276, 118043 (2020). https://doi.org/10.1016/j.fuel.2020.118043

  50. Jiaqiang, E., Mengyuan, Z., Qingsong, Z., et al.: Effects analysis on diesel soot continuous regeneration performance of a rotary MW-assisted regeneration diesel particulate filter. Fuel 260, 116353 (2020). https://doi.org/10.1016/j.fuel.2019.116353

    Article  CAS  Google Scholar 

  51. Tanaka A, Miyoshi N, Sato A. Development of low pressure and high performance GPF catalyst. SAE Tech Pap 2018–01–1261 (2018). https://doi.org/10.4271/2018-01-1261

  52. Ota, Y., Takahasi, H., Maekawa, R.: Development of coated gasoline particulate filter design method combining simulation and multi-objective optimization. SAE Int J Adv Curr Prac Mobil 4(1), 204–210 (2022). https://doi.org/10.4271/2021-01-0838

    Article  Google Scholar 

  53. Hajireza S, Johannesen L, Wolff T, et al. A modeling and experimental investigation on an innovative substrate for DPF applications. SAE Tech Pap 2010–01–0891 (2010). https://doi.org/10.4271/2010-01-0891

  54. Koltsakis G, Samaras Z, Echtle H, et al. Flow maldistribution effects on DPF performance. SAE Tech Pap 2009–01–1280 (2009). https://doi.org/10.4271/2009-01-1280.

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing. The authors acknowledge technical support from the members in Higashifuji Technical Centre in Toyota Motor Corporation and Soken Incorporated.

Author information

Authors and Affiliations

Authors

Contributions

Toru Uenishi: conceptualization, data curation, formal analysis, investigation, methodology, software, validation, visualization, funding acquisition, project administration, resources, supervision, and original draft; Kazuhiko Koike: data curation, formal analysis, investigation, methodology, validation, visualization, and writing—review and editing; Takumi Suzawa: data curation, formal analysis, investigation, methodology, validation, visualization, writing—review and editing.

Corresponding author

Correspondence to Toru Uenishi.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uenishi, T., Koike, K. & Suzawa, T. Research on Regeneration Technology for Gasoline Particulate Filters Using Microwave Heating. Emiss. Control Sci. Technol. 10, 38–51 (2024). https://doi.org/10.1007/s40825-024-00239-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-024-00239-2

Keywords

Navigation