Skip to main content
Log in

The Effect of Catalyst Composition on Electric Field-Mediated Catalytic Reactions for Exhaust Emission Control

  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

To prevent global warming, improvements in the efficiency of internal combustion engines and the introduction of hybrid electric vehicles are gaining popularity as ways of controlling carbon dioxide emissions. Because of the lower average temperature of the exhaust gases from these systems, catalytic reactions mediated by an electric field have attracted attention because catalysts can have higher catalytic activity at lower temperatures than conventional catalysts. In addition, they consume less power than electrically heated catalysts. In this study, we determined the catalytic activity of a palladium/ceria-zirconia catalyst in an electric field with exhaust gas temperatures lower than conventional gas temperatures. Further evaluation using catalytic materials with modified ceria-zirconia ratios revealed the importance of the electrical resistance of the materials during electric field–mediated catalytic reactions. Upon modulating the applied current, the current strength was found to be related to a change in the electrical resistance of the catalyst during the reaction. Furthermore, we observed that the activity and electrical resistance of the catalysts were intrinsically linked. These results suggest that electron-promoted surface proton transport and intra-lattice oxygen defects in metal oxide catalysts, as well as their structural changes, significantly contribute to their catalytic activity in an electric field. These electric field–mediated catalytic reactions using modified catalysts can adapt to the growing shift in engine operating conditions by ensuring that the benefits associated with the use of hybrid vehicles and high-efficiency combustion engines are not offset by an increase in the production of carbon monoxide, nitrogen oxide, and unburned hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Adelman, ZE.: A reevaluation of the carbon bound-IV photochemical mechanism. MS. thesis, University of North Carolina, USA, (1999)

  2. Avery, R.J.: Reactivity-based VOC control for solvent products: more efficient ozone reduction strategies. Environ. Sci. Technol. 40, 4845–4850 (2006). https://doi.org/10.1021/es060296u

    Article  Google Scholar 

  3. Castell, N., Mantilla, E., Stein, A.F., et al.: A modeling study of the impact of a power plant on ground-level ozone in relation to its location: southwestern Spain as a case study. Water. Air. Soil. Pollut. 209, 61–79 (2010). https://doi.org/10.1007/s11270-009-0181-y

    Article  Google Scholar 

  4. Environmental Protection Agency of United States. Regulations for emissions from vehicles and engines, https://www.epa.gov/regulations-emissions-vehicles-and-engines/regulations-onroad-vehicles-and-engines (2021). Accessed 28 May 2023

  5. Internal Market, Industry, Entrepreneurship and SMEs of European- Union. Emissions in the automotive sector, https://www.ec.europa.eu/growth/sectors/automotive/environment-protection/emissions_en (2019). Accessed 28 May 2023

  6. Ministry of the Environment of Government of Japan. Motor vehicle exhaust emission standards, https://www.env.go.jp/en/air/aq/mv/standards.html (2016). Accessed 28 May 2023

  7. Kawaguchi, B., Umemoto, K., Misawa, S., Hirooka, S. et al.: ICE vehicle challenge toward zero emissions: future technology harmonization in electrified powertrain system. SAE Technical Paper 2019–01–2217 (2019). https://doi.org/10.4271/2019-01-2217

  8. Kaniyu, J., Sakatani, S., Matsumura, E., and Kitamura, T.: Analysis of spray feature injected by tailpipe injector for aftertreatment of diesel engine emissions. SAE Technical Paper 2017–01–2373 (2017). https://doi.org/10.4271/2017-01-2373.

  9. Uenishi, T., Umemoto, K., Yoshida, K., et al.: Development of the design methodology for a new De-NOx system. Int. J. Automot. Eng. 5, 115–120 (2014). https://doi.org/10.20485/jsaeijae.5.3_115

    Article  Google Scholar 

  10. Johansson, Å., Wallin, U., Karlsson, M., Isaksson, A. et al.: Investigation on uniformity indices used for diesel exhaust aftertreatment systems. SAE Technical Paper 2008–01–0613 (2008). https://doi.org/10.4271/2008-01-0613

  11. Martin, A., Will, N., Bordet, A., Cornet, P. et al.: Effect of flow distribution on emissions performance of catalytic converters. SAE Technical Paper 980936 (1998). https://doi.org/10.4271/980936

  12. Weltens, H., Bressler, H., Terres, F., Neumaier, H. et al.: Optimisation of catalytic converter gas flow distribution by CFD prediction. SAE Technical Paper 930780 (1993). https://doi.org/10.4271/930780

  13. Torkashvand, B., Maier, L., Hettel, M., Schedlbauer, T., et al.: On the challenges and constrains of ultra-low emission limits: formaldehyde oxidation in catalytic sinusoidal-shaped channels. Chem. Eng. Sci. 195, 841–850 (2018). https://doi.org/10.1016/j.ces.2018.10.031

    Article  Google Scholar 

  14. Adams, K.M., Cavataio, J.V., Hammerle, R.H.: Lean NOx catalysis for diesel passenger cars: investigating effects of sulfur dioxide and space velocity. Appl. Catal. B: Environ. 10, 157–181 (1996). https://doi.org/10.1016/0926-3373(96)00029-X

    Article  Google Scholar 

  15. Subramanian, N.D., Gao, J., Mo, X., et al.: La and/or V oxide promoted Rh/SiO2 catalysts: effect of temperature, H2/CO ratio, space velocity, and pressure on ethanol selectivity from syngas. J. Catal. 272, 204–209 (2010). https://doi.org/10.1016/j.jcat.2010.03.019

    Article  Google Scholar 

  16. Martin AP, Will NS, Bordet A, et al.: Effect of flow distribution on emissions performance of catalytic converters. SAE Int. J. Fuels Lubr. 107, 384–390 (1998). https://www.jstor.org/stable/44746459

  17. Korotkikh, O., Farrauto, R.: Selective catalytic oxidation of CO in H2: fuel cell applications. Catal. Today 62, 249–254 (2000)

    Article  Google Scholar 

  18. Balakotaiah, V.: On the relationship between Aris and Sherwood numbers and friction and effectiveness factors. Chem. Eng. Sci. 63, 5802–5812 (2008). https://doi.org/10.1016/j.ces.2008.08.025

    Article  Google Scholar 

  19. Bissett, E.J.: An asymptotic solution for washcoat pore diffusion in catalytic monoliths. Emiss. Control Sci. Technol. 1, 3–16 (2015). https://doi.org/10.1007/s40825-015-0010-2

    Article  Google Scholar 

  20. Rink, J., Mozaffari, B., Tischer, S., et al.: Real-time simulation of dual-layer catalytic converters based on the internal mass transfer coefficient approach. Top. Catal. 60, 225–229 (2017). https://doi.org/10.1007/s11244-016-0602-2

    Article  Google Scholar 

  21. Yamamoto, O., Matsuo, Y., Tosa, S., Okayama, T. et al.: Numerical modeling study of detailed gas diffusivity into catalyst washcoat for lean NOx catalyst. SAE Technical Paper 2019–01–0993 (2019). https://doi.org/10.4271/2019-01-0993

  22. Wang, X., Chen, H., Sachtler, W.M.H.: Selective reduction of NOx with hydrocarbons over Co/MFI prepared by sublimation of CoBr2 and other methods. Appl. Catal. B: Environ. 29, 47–60 (2001). https://doi.org/10.1016/S0926-3373(00)00186-7

    Article  Google Scholar 

  23. Matsumoto, S., Yokota, K., Doi, H.: Research on new DeNOx catalysts for automotive engines. Catal. Today 22, 127–146 (1994). https://doi.org/10.1016/0920-5861(94)80097-9

    Article  Google Scholar 

  24. Witzel, F., Sill, G.A., Hall, W.K.: Reaction studies of the selective reduction of NO by various hydrocarbons. J. Catal. 149, 229–237 (1994). https://doi.org/10.1006/jcat.1994.1289

    Article  Google Scholar 

  25. Dzwigaj, S., Janas, J., Gurgul, J., et al.: Do Cu(II) ions need Al atoms in their environment to make CuSiBEA active in the SCR of NO by ethanol or propane? A spectroscopy and catalysis study. Appl. Catal. B: Environ. 85, 131–138 (2009). https://doi.org/10.1016/j.apcatb.2008.07.003

    Article  Google Scholar 

  26. Iliopoulou, E.F., Evdou, A.P., Lemonidou, A.A., et al.: Ag/alumina catalysts for the selective catalytic reduction of NOx using various reductants. Appl. Catal. A: Gen. 274, 179–189 (2004). https://doi.org/10.1016/j.apcata.2004.06.052

    Article  Google Scholar 

  27. Shimizu, K., Satsuma, A., Hattori, T., et al.: Catalytic performance of Ag–Al2O3 catalyst for the selective catalytic reduction of NO by higher hydrocarbons. Appl. Catal. B: Environ. 25, 239–247 (2000). https://doi.org/10.1016/j.apcata.2004.06.052

    Article  Google Scholar 

  28. Shibata, J., Shimizu, K., Satsuma, A., et al.: Influence of hydrocarbon structure on selective catalytic reduction of NO by hydrocarbons over Cu-Al2O3. Appl. Catal. B: Environ. 37, 197–204 (2002). https://doi.org/10.1016/S0926-3373(01)00336-8

    Article  Google Scholar 

  29. Bisaiji, Y., Yoshida, K., Inoue, M., Umemoto, K., et al.: Development of Di-Air - a new diesel deNOx system by adsorbed intermediate reductants. SAE Int. J. Fuels Lubr. 5(1), 380–388 (2012). https://doi.org/10.4271/2011-01-2089

    Article  Google Scholar 

  30. Bisaiji, Y., Yoshida, K., Inoue, M., Takagi, N., et al.: Reaction mechanism analysis of di-air-contributions of hydrocarbons and intermediates. SAE Int. J. Fuels Lubr. 5(3), 1310–1316 (2012). https://doi.org/10.4271/2012-01-1744

    Article  Google Scholar 

  31. Uenishi, T., Shigeno, G., Shigeno, G. et al.: Research on numerical analysis code of oxidation behavior of hydrocarbon on diesel oxidation catalyst. In: The Ninth International Conference on Modeling and Diagnostics for Advanced (ed Tomita E), Okayama, Japan, 25 July-28 July 2017, Tokyo: JSME

  32. Shigeno, G., Shigeno, G., Uenishi, T., et al.: The numerical analysis for the effect of higher hydrocarbon on diesel oxidation catalyst oxidation reaction. Tran. Soc. Auto. Eng. J. 49, 1097–1102 (2018). https://doi.org/10.11351/jsaeronbun.49.1097

    Article  Google Scholar 

  33. Shigeno, G., Nishiyama, H., Uenishi, T., et al.: The experimental analysis for the effect of hydrocarbon in species and concentration on diesel oxidation catalysts oxidation reaction. Tran. Soc. Auto. Eng. J. 48, 609–614 (2017). https://doi.org/10.11351/jsaeronbun.48.609

    Article  Google Scholar 

  34. Shigeno, G., Hata, H., Shigeno, G., et al.: The experimental analysis for the effect of competitive adsorption of multicomponent hydrocarbons on diesel oxidation catalysts oxidation Reaction. Tran. Soc. Auto. Eng. J. 49, 1114–1119 (2018). https://doi.org/10.11351/jsaeronbun.49.1114

    Article  Google Scholar 

  35. Tsuchiya, A., Masaoka, S., Ohyama, J., et al.: Effects of carbon number and bond saturation on hydrocarbon combustion over a diesel oxidation catalyst. Catal. Sci. Technol. 10, 3868–3874 (2020). https://doi.org/10.1039/D0CY00017E

    Article  Google Scholar 

  36. Masaoka, S., Tsuchiya, A., Satsuma, A., et al.: Studies on the poisoning effect of saturated and unsaturated hydrocarbons on the surface of diesel oxidation catalysts. 122nd Annual Conference of Catalysis Society of Japan, 2E06, (2018)

  37. Uenishi, T.: Study on the effect of hydrocarbon structure on the reactivity of the three-way catalytic converter. Int. J. Engine Res. 24, 2772–2782 (2023). https://doi.org/10.1177/14680874221133435

    Article  Google Scholar 

  38. Ohnishi, T., Kawakami, K., Nishioka, M., Ogura, M.: Direct decomposition of NO on metal-loaded zeolites with coexistence of oxygen and water vapor under unsteady-state conditions by NO concentration and microwave rapid heating. Catal. Today 281, 566–574 (2016). https://doi.org/10.1016/j.cattod.2016.07.012

    Article  Google Scholar 

  39. Jing, C., Kan, Z., Mei, W.: Experimental study on the plasma purification for diesel engine exhaust gas. Earth. Environ. Sci. 113, 012186 (2018). https://doi.org/10.1088/1755-1315/113/1/012186

    Article  Google Scholar 

  40. Oshima, K., Tanaka, K., Yabe, T., Kikuchi, E., Sekine, Y.: Oxidative coupling of methane using carbon dioxide in an electric field over La-ZrO2 catalyst at low external temperature. Fuel 107, 879–881 (2013). https://doi.org/10.1016/j.fuel.2013.01.058

    Article  Google Scholar 

  41. Manabe, R., Nakatsubo, H., Gondo, A., Murakami, K., Ogo, S., Tsuneki, H., Ikeda, M., Ishikawa, A., Nakai, H., Sekine, Y.: Electrocatalytic synthesis of ammonia by surface proton hopping. Chem. Sci. 8, 5434–5439 (2017). https://doi.org/10.1039/C7SC00840F

    Article  Google Scholar 

  42. Takise, K., Sato, A., Murakami, K., Ogo, S., Seo, J.G., Imagawa, K., Kado, S., Sekine, Y.: Irreversible catalytic methylcyclohexane dehydrogenation by surface protonics at low temperature. RSC Adv. 9, 5918–5924 (2019). https://doi.org/10.1039/C9RA00407F

    Article  Google Scholar 

  43. Mukai, D., Tochiya, S., Murai, Y., Imori, M., Hashimoto, T., Sugiura, Y., Sekine, Y.: Role of support lattice oxygen on steam reforming of toluene for hydrogen production over Ni/La0.7Sr0.3AlO3-d catalyst. Appl. Catal. A. 453, 60–70 (2013). https://doi.org/10.1016/j.apcata.2012.11.040

    Article  Google Scholar 

  44. Yabe, T., Mitarai, K., Oshima, K., Ogo, S., Sekine, Y.: Low-temperature dry reforming of methane to produce syngas in an electric field over La-doped Ni/ZrO2 catalysts. Fuel Process. Technol. 158, 96–103 (2017). https://doi.org/10.1016/j.fuproc.2016.11.013

    Article  Google Scholar 

  45. Sakurai, S., Ogo, S., Sekine, Y.: Hydrogen production by steam reforming of ethanol over Pt/CeO2 catalyst in electric field at low temperature. J. Jpn. Petrol. Inst. 59, 174–183 (2016). https://doi.org/10.1627/jpi.59.174

    Article  Google Scholar 

  46. Oshima, K., Shinagawa, T., Haraguchi, M., Sekine, Y.: Low temperature hydrogen production by catalytic steam reforming of methane in an electric field. Int. J. Hydrog. 38, 3003–3011 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.069

    Article  Google Scholar 

  47. Inagaki, R., Manabe, R., Hisai, Y., Kamite, Y., Yabe, T., Ogo, S., Sekine, Y.: Steam reforming of dimethyl ether promoted by surface protonics in an electric field Int. J. Hydrog. 43, 14310–14318 (2018). https://doi.org/10.1016/j.ijhydene.2018.05.164

    Article  Google Scholar 

  48. Shigemoto, A., Higo, T., Narita, Y., Yamazoe, S., Uenishi, T., Sekine, Y.: Elucidation of catalytic NOx reduction mechanism in an electric field at low temperatures. Catal. Sci. Technol. 12, 4450–4455 (2022). https://doi.org/10.1039/D2CY00129B

    Article  Google Scholar 

  49. Omori, Y., Shigemoto, A., Sugihara, K., Higo, T., Uenishi, T., Sekine, Y.: Electrical promotion-assisted automotive exhaust catalyst: highly active and selective NO reduction to N2 at low-temperatures. Catal. Sci. Technol. 11, 4008–4011 (2021). https://doi.org/10.1039/D1CY00591J

    Article  Google Scholar 

  50. Uenishi, T., Shigemoto, A., Omori, Y., Higo, T., Ogo, S., Sekine, Y.: Three-way catalytic reaction in an electric field for exhaust emission control application. SAE Technical Paper 2021–01–0573 (2021). https://doi.org/10.4271/2021-01-0573

  51. Nakano, N., Torimoto, M., Sampei, H., Yamashita, R., Yamano, R., Saegusa, K., Motomura, A., Nagakawa, K., Tsuneki, H., Ogo, S., Sekine, Y.: Elucidation of the reaction mechanism on dry reforming of methane in an electric field by in-situ DRIFTs. RSC Adv. 12, 9036–9043 (2022). https://doi.org/10.1039/D2RA00402J

    Article  Google Scholar 

  52. Matsuda, T., Ishibashi, R., Koshizuka, Y., Tsuneki, H., Sekine, Y.: Quantitative investigation of CeO2 surface proton conduction in H2 atmosphere. Chem. Comm. 58, 10789–10792 (2022). https://doi.org/10.1039/D2CC03687H

    Article  Google Scholar 

  53. Burch, R., Breen, J.P., Meunier, F.C.: A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Appl. Catal. B 39, 283–303 (2002). https://doi.org/10.1016/S0926-3373(02)00118-2

    Article  Google Scholar 

  54. Higo, T., Ueno, K., Omori, Y., Tsuchiya, H., et al.: Perovskite lattice oxygen contributes to low-temperature catalysis for exhaust gas cleaning. RSC Adv. 9, 22721–22728 (2019). https://doi.org/10.1039/C9RA03050F

    Article  Google Scholar 

  55. Stotz, H., Maier, L., Deutschmann, O.: Methane oxidation over palladium: on the mechanism in fuel-rich mixtures at high temperatures. Top. Catal. 60, 83–109 (2017). https://doi.org/10.1007/s11244-016-0717-5

    Article  Google Scholar 

  56. Hartmann, M., Maier, L., Minh, H.D., Deutschmann, O.: Catalytic partial oxidation of iso-octane over rhodium catalysts: an experimental, modeling, and simulation study. Combust. Flame 157, 1771–1782 (2010). https://doi.org/10.1016/j.combustflame.2010.03.005

    Article  Google Scholar 

  57. Oshima, K., Shinagawa, T.: Sekine Y : Methane conversion assisted by plasma or electric field. J. Japan Pet. Inst. 56, 11–21 (2013). https://doi.org/10.1627/jpi.56.11

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Editage (www.editage.com) for the English language editing. The authors acknowledge the technical support from the members of the Higashifuji Technical Center at Toyota Motor Corporation.

Author information

Authors and Affiliations

Authors

Contributions

Toru Uenishi: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Software; Validation; Visualization; Funding acquisition; Project administration; Resources; Supervision; original draft, Yasushi Sekine: Conceptualization; Writing—review & editing.

Corresponding author

Correspondence to Toru Uenishi.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uenishi, T., Sekine, Y. The Effect of Catalyst Composition on Electric Field-Mediated Catalytic Reactions for Exhaust Emission Control. Emiss. Control Sci. Technol. 9, 189–199 (2023). https://doi.org/10.1007/s40825-023-00230-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-023-00230-3

Keywords

Navigation