Skip to main content

Advertisement

Log in

Assessment of the Single-Site Kinetic Model for NH3-SCR on Cu-Chabazite for the Prediction of NOx Emissions in Dynamometer Tests

  • Original Paper
  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

A transient single-site kinetic model consisting of NH3-SCR (selective catalytic reduction) related reactions (NH3 adsorption/desorption, NH3 oxidation, NO oxidation, standard SCR, fast SCR, NO2-SCR, NH4NO3, and N2O formation) on a commercial multi-site Cu-Chabazite washcoated monolith was developed using laboratory scale synthetic gas bench (SGB) data and its potential towards predicting the downstream NOx concentrations was assessed using SGB and dynamometer tests. Kinetic model described the transient and steady-state data obtained for the model development in the SGB well. Single-site nature of the model enabled the prediction of the reactivity of the lower temperature active Cu site much better than the activity associated with higher temperature Cu sites. Validation experiments in the SGB at 185 °C which consisted of varying NH3 and NO2/NOx ratios were very well predicted. The kinetic model was also successful in predicting the instantaneous NOx emissions and cumulative NOx and N2O amount released in real-size SCR reactors during World Harmonic Transient Cycle (WHTC) in the 220–290 °C range. Model was in slight disagreement with measured cumulative NO but was in good in agreement with NO2 for the World Harmonic Stationary Cycle (WHSC) tests in dynamometer and 235–339 °C range, respectively. The developed model was found sufficient for both design and calibration of aftertreatment systems (ATS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

a j :

active site density for reaction j, (molsite x m−3 catalyst)

A k :

active site density for coverage k, (mol x m−3 catalyst)

A i :

pre-exponential factor for reaction i

Ci :

intraporous concentration of species i (mol x m−3)

D i, m :

binary diffusion coefficient of species i in the mixture (m2 x s−1)

D e, i :

effective diffusivity for species i (m2 x s−1)

D Kn, i :

Knudsen diffusion coefficient for species i (m2 x s−1)

D h :

hydraulic diameter (m)

d p :

washcoat pore size available for gas diffusion (m)

E A,j :

activation energy for reaction j (kJ x mol−1)

E A,j,0 :

activation energy for reaction j at zero coverage (kJ x mol−1)

f wc :

solid fraction of washcoat

G :

surface area per reactor volume (m−1)

k j :

turnover rate constant for the reaction j

k m, i :

external mass transfer coefficient for species i (kg x m−2 s−1)

M i :

molecular weight of species i (kg x mol−1)

r j :

reaction rate for reaction j (mol x s−1 x molsite−1)

R :

gas constant (J x mol−1 x K−1)

R i :

species mass rate for generation or consumption (kg x m−3 x s−1)

s ij :

stoichiometric coefficient of species i for reaction j

Sh i :

Sherwood number

V i :

diffusion volume for species i (cm3 x mol−1)

v :

interstitial velocity (m x s−1)

α :

coverage dependence

δ :

washcoat thickness (m)

ε :

void fraction of reactor

ε w :

void fraction of washcoat

ρ g :

density of bulk gas in reactor channels (kg x m−3)

ρ s :

density of gas at catalyst surface (kg x m−3)

ω i :

intraporous mass fraction of species i

ω g, i :

mass fraction of species i in the bulk gas

ω w, i :

mass fraction of species i in the gas-solid interface

θ k :

surface coverage of species k

σ kj :

stoichiometric coefficient of coverage i in reaction k

References

  1. Dumesic, J.A., Topsøe, N.Y., Topsøe, H., Chen, Y., Slabiak, T.: Kinetics of selective catalytic reduction of nitric oxide by ammonia over Vanadia/Titania. J. Catal. 163(2), 409–417 (1996). https://doi.org/10.1006/jcat.1996.0342

    Article  Google Scholar 

  2. Roduit, B., Wokaun, A., Baiker, A.: Global kinetic modeling of reactions occurring during selective catalytic reduction of NO by NH3 over Vanadia/Titania-based catalysts. Ind. Eng. Chem. Res. 37(12), 4577–4590 (1998). https://doi.org/10.1021/ie980310e

    Article  Google Scholar 

  3. Nova, I., Lietti, L., Tronconi, E., Forzatti, P.: Transient response method applied to the kinetic analysis of the DeNOx–SCR reaction. Chem. Eng. Sci. 56(4), 1229–1237 (2001). https://doi.org/10.1016/S0009-2509(00)00344-4

    Article  Google Scholar 

  4. Chatterjee, D., Burkhardt, T., Bandl-Konrad, B., Braun, T., Tronconi, E., Nova, I., Ciardelli, C.: Numerical simulation of ammonia SCR-catalytic converters: model development and application. SAE Technical Paper Series 2005–01-965 (2005)

  5. Chatterjee, D., Burkhardt, T., Weibel, M., Nova, I., Grossale, A., Tronconi, E.: Numerical simulation of zeolite- and V-based SCR catalytic converters. SAE Technical Paper Series 2007-01-1136 (2007)

  6. Kwak, J.H., Tonkyn, R.G., Kim, D.H., Szanyi, J., Peden, C.H.F.: Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J. Catal. 275(2), 187–190 (2010). https://doi.org/10.1016/j.jcat.2010.07.031

    Article  Google Scholar 

  7. Gao, F., Kwak, J.H., Szanyi, J., Peden, C.H.F.: Current understanding of Cu-exchanged chabazite molecular sieves for use as commercial diesel engine DeNO(x) catalysts. Top. Catal. 56(15–17), 1441–1459 (2013). https://doi.org/10.1007/s11244-013-0145-8

    Article  Google Scholar 

  8. Sjovall, H., Olsson, L., Fridell, E., Blint, R.J.: Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5—the effect of changing the gas composition. Appl. Catal. B-Environ. 64(3–4), 180–188 (2006). https://doi.org/10.1016/j.apcatb.2005.12.003

    Article  Google Scholar 

  9. Cavataio, G., Girard, J., Patterson, J.E., Montreuil, C., Cheng, Y., Lambert, C.K.: Laboratory testing of urea-SCR formulations to meet tier 2 bin 5 emissions. SAE Technical Paper Series 2007-01-1575 (2007)

  10. Sullivan, J.A., Cunningham, J., Morris, M.A., Keneavey, K.: Conditions in which Cu-ZSM-5 outperforms supported vanadia catalysts in SCR of NOxby NH3. Appl. Catal. B Environ. 7(1), 137–151 (1995). https://doi.org/10.1016/0926-3373(95)00031-3

    Article  Google Scholar 

  11. Metkar, P.S., Harold, M.P., Balakotaiah, V.: Selective catalytic reduction of NOx on combined Fe- and Cu-zeolite monolithic catalysts: sequential and dual layer configurations. Appl. Catal. B-Environ. 111, 67–80 (2012). https://doi.org/10.1016/j.apcatb.2011.09.019

    Article  Google Scholar 

  12. Krocher, O., Devadas, M., Elsener, M., Wokaun, A., Soger, N., Pfeifer, M., Demel, Y., Mussmann, L.: Investigation of the selective catalytic reduction of NO by NH3 on Fe-ZSM5 monolith catalysts. Appl. Catal. B-Environ. 66(3–4), 208–216 (2006). https://doi.org/10.1016/j.apcatb.2006.03.012

    Article  Google Scholar 

  13. Kwak, J.H., Tran, D., Burton, S.D., Szanyi, J., Lee, J.H., Peden, C.H.F.: Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites. J. Catal. 287, 203–209 (2012). https://doi.org/10.1016/j.jcat.2011.12.025

    Article  Google Scholar 

  14. Olsson, L., Sjovall, H., Blint, R.J.: A kinetic model for ammonia selective catalytic reduction over Cu-ZSM-5. Appl. Catal. B-Environ. 81(3–4), 203–217 (2008). https://doi.org/10.1016/j.apcatb.2007.12.011

    Article  Google Scholar 

  15. Supriyanto, Wijayanti, K., Kumar, A., Joshi, S., Kamasamudram, K., Currier, N.W., Yezerets, A., Olsson, L.: Global kinetic modeling of hydrothermal aging of NH3-SCR over Cu-zeolites. Appl. Catal. B-Environ. 163, 382–392 (2015). https://doi.org/10.1016/j.apcatb.2014.07.059

    Article  Google Scholar 

  16. Metkar, P.S., Balakotaiah, V., Harold, M.P.: Experimental and kinetic modeling study of NO oxidation: comparison of Fe and Cu-zeolite catalysts. Catal. Today. 184(1), 115–128 (2012). https://doi.org/10.1016/j.cattod.2011.11.032

    Article  Google Scholar 

  17. Joshi, S.Y., Kumar, A., Luo, J., Kamasamudram, K., Currier, N.W., Yezerets, A.: Combined experimental and kinetic modeling study of the bi-modal NOx conversion profile on commercial Cu-SAPO-34 catalyst under standard SCR conditions. Appl. Catal. B Environ. 165, 27–35 (2015). https://doi.org/10.1016/j.apcatb.2014.09.060

    Article  Google Scholar 

  18. Chen, H.-Y., Wei, Z., Kollar, M., Gao, F., Wang, Y., Szanyi, J., Peden, C.H.F.: A comparative study of N2O formation during the selective catalytic reduction of NOx with NH3 on zeolite supported Cu catalysts. J. Catal. 329, 490–498 (2015). https://doi.org/10.1016/j.jcat.2015.06.016

    Article  Google Scholar 

  19. Gao, F., Washton, N.M., Wang, Y., Kollár, M., Szanyi, J., Peden, C.H.F.: Effects of Si/Al ratio on cu/SSZ-13 NH3-SCR catalysts: implications for the active cu species and the roles of Brønsted acidity. J. Catal. 331, 25–38 (2015). https://doi.org/10.1016/j.jcat.2015.08.004

    Article  Google Scholar 

  20. Fan, C., Chen, Z., Pang, L., Ming, S., Zhang, X., Albert, K.B., Liu, P., Chen, H., Li, T.: The influence of Si/Al ratio on the catalytic property and hydrothermal stability of Cu-SSZ-13 catalysts for NH3-SCR. Appl. Catal. A Gen. 550, 256–265 (2018). https://doi.org/10.1016/j.apcata.2017.11.021

    Article  Google Scholar 

  21. Gao, F., Walter, E.D., Karp, E.M., Luo, J.Y., Tonkyn, R.G., Kwak, J.H., Szanyi, J., Peden, C.H.F.: Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies. J. Catal. 300, 20–29 (2013). https://doi.org/10.1016/j.jcat.2012.12.020

    Article  Google Scholar 

  22. Kwak, J.H., Tran, D., Szanyi, J., Peden, C.H.F., Lee, J.H.: The effect of copper loading on the selective catalytic reduction of nitric oxide by ammonia over Cu-SSZ-13. Catal. Lett. 142(3), 295–301 (2012). https://doi.org/10.1007/s10562-012-0771-y

    Article  Google Scholar 

  23. Gao, F., Walter, E.D., Kollar, M., Wang, Y.L., Szanyi, J., Peden, C.H.F.: Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions. J. Catal. 319, 1–14 (2014). https://doi.org/10.1016/j.jcat.2014.08.010

    Article  Google Scholar 

  24. Wang, L., Li, W., Qi, G.S., Weng, D.: Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3. J. Catal. 289, 21–29 (2012). https://doi.org/10.1016/j.jcat.2012.01.012

    Article  Google Scholar 

  25. Wang, D., Zhang, L., Li, J.H., Kamasamudram, K., Epling, W.S.: NH3-SCR over Cu/SAPO-34—zeolite acidity and Cu structure changes as a function of Cu loading. Catal. Today. 231, 64–74 (2014). https://doi.org/10.1016/j.cattod.2013.11.040

    Article  Google Scholar 

  26. Bates, S.A., Verma, A.A., Paolucci, C., Parekh, A.A., Anggara, T., Yezerets, A., Schneider, W.F., Miller, J.T., Delgass, W.N., Ribeiro, F.H.: Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu-SSZ-13. J. Catal. 312, 87–97 (2014). https://doi.org/10.1016/j.jcat.2014.01.004

    Article  Google Scholar 

  27. Wang, D., Zhang, L., Kamasamudram, K., Epling, W.S.: In situ-DRIFTS study of selective catalytic reduction of NOx by NH3 over Cu-exchanged SAPO-34. ACS Catal. 3(5), 871–881 (2013). https://doi.org/10.1021/cs300843k

    Article  Google Scholar 

  28. Janssens, T.V.W., Falsig, H., Lundegaard, L.F., Vennestrom, P.N.R., Rasmussen, S.B., Moses, P.G., Giordanino, F., Borfecchia, E., Lomachenko, K.A., Lamberti, C., Bordiga, S., Godiksen, A., Mossin, S., Beato, P.: A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia. ACS Catal. 5(5), 2832–2845 (2015). https://doi.org/10.1021/cs501673g

    Article  Google Scholar 

  29. Paolucci, C., Parekh, A.A., Khurana, I., Di Iorio, J.R., Li, H., Albarracin Caballero, J.D., Shih, A.J., Anggara, T., Delgass, W.N., Miller, J.T., Ribeiro, F.H., Gounder, R., Schneider, W.F.: Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites. J. Am. Chem. Soc. 138(18), 6028–6048 (2016). https://doi.org/10.1021/jacs.6b02651

    Article  Google Scholar 

  30. Giordanino, F., Vennestrom, P.N.R., Lundegaard, L.F., Stappen, F.N., Mossin, S., Beato, P., Bordiga, S., Lamberti, C.: Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-beta with similar Si/Al and Cu/Al ratios. Dalton Trans. 42(35), 12741–12761 (2013). https://doi.org/10.1039/c3dt50732g

    Article  Google Scholar 

  31. Borfecchia, E., Lomachenko, K.A., Giordanino, F., Falsig, H., Beato, P., Soldatov, A.V., Bordiga, S., Lamberti, C.: Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction. Chem. Sci. 6(1), 548–563 (2015). https://doi.org/10.1039/c4sc02907k

    Article  Google Scholar 

  32. Ipek, B., Wulfers, M.J., Kim, H., Göltl, F., Hermans, I., Smith, J.P., Booksh, K.S., Brown, C.M., Lobo, R.F.: Formation of [Cu2O2]2+ and [Cu2O]2+ toward C–H bond activation in Cu-SSZ-13 and Cu-SSZ-39. ACS Catal. 7(7), 4291–4303 (2017). https://doi.org/10.1021/acscatal.6b03005

    Article  Google Scholar 

  33. Paolucci, C., Khurana, I., Parekh, A.A., Li, S., Shih, A.J., Li, H., Di Iorio, J.R., Albarracin-Caballero, J.D., Yezerets, A., Miller, J.T., Delgass, W.N., Ribeiro, F.H., Schneider, W.F., Gounder, R.: Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science. 357(6354), 898–903 (2017). https://doi.org/10.1126/science.aan5630

    Article  Google Scholar 

  34. Marberger, A., Petrov, A.W., Steiger, P., Elsener, M., Kröcher, O., Nachtegaal, M., Ferri, D.: Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13. Nat. Catal. 1(3), 221–227 (2018). https://doi.org/10.1038/s41929-018-0032-6

    Article  Google Scholar 

  35. Joshi, S.Y., Kumar, A., Luo, J., Kamasamudram, K., Currier, N.W., Yezerets, A.: New insights into the mechanism of NH3-SCR over Cu- and Fe-zeolite catalyst: apparent negative activation energy at high temperature and catalyst unit design consequences. Appl. Catal. B Environ. 226, 565–574 (2018). https://doi.org/10.1016/j.apcatb.2017.12.076

    Article  Google Scholar 

  36. Colombo, M., Nova, I., Tronconi, E.: Detailed kinetic modeling of the NH3-NO/NO2 SCR reactions over a commercial Cu-zeolite catalyst for diesel exhausts after treatment. Catal. Today. 197(1), 243–255 (2012). https://doi.org/10.1016/j.cattod.2012.09.002

    Article  Google Scholar 

  37. Olsson, L., Sjovall, H., Blint, R.J.: Detailed kinetic modeling of NOx adsorption and NO oxidation over Cu-ZSM-5. Appl. Catal. B-Environ. 87(3–4), 200–210 (2009). https://doi.org/10.1016/j.apcatb.2008.09.007

    Article  Google Scholar 

  38. Sjovall, H., Blint, R.J., Olsson, L.: Detailed kinetic modeling of NH3 SCR over Cu-ZSM-5. Appl. Catal. B-Environ. 92(1–2), 138–153 (2009). https://doi.org/10.1016/j.apcatb.2009.07.020

    Article  Google Scholar 

  39. Sjövall, H., Blint, R.J., Olsson, L.: Detailed kinetic modeling of NH3 and H2O adsorption, and NH3 oxidation over Cu-ZSM-5. J. Phys. Chem. C. 113, 1393–1405 (2009)

    Article  Google Scholar 

  40. Bendrich, V.M., Scheuerb, A., Hayesa, R.E., Votsmeierb, M.: Unified mechanistic model for standard SCR, fast SCR, and NO2 SCR over a copper chabazite catalyst. Appl. Catal. B Environ. 222, 76–87 (2018)

    Article  Google Scholar 

  41. Olsson, L., Wijayanti, K., Leistner, K., Kumar, A., Joshi, S.Y., Kamasamudram, K., Currier, N.W., Yezerets, A.: A multi-site kinetic model for NH3-SCR over Cu/SSZ-13. Appl. Catal. B-Environ. 174, 212–224 (2015). https://doi.org/10.1016/j.apcatb.2015.02.037

    Article  Google Scholar 

  42. Daya, R., Desai, C., Vernham, B.: Development and validation of a two-site kinetic model for NH3-SCR over Cu-SSZ-13. Part 1. Detailed global kinetics development based on mechanistic considerations. Emission Contr. Sci. Technol. 4, 143–171 (2018)

    Article  Google Scholar 

  43. Jangjou, Y., Sampara, C.S., Gu, Y., Wang, D., Kumar, A., Li, J., Epling, W.S.: Mechanism-based kinetic modeling of Cu-SSZ-13 sulfation and desulfation for NH3-SCR applications. React. Chem. Eng. (2019). https://doi.org/10.1039/C8RE00210J

    Article  Google Scholar 

  44. Gundlapally, S.R., Papadimitriou, S.R., Wahiduzzaman, S., Gu, T.: Development of ECU capable Grey-box models from detailed models—application to a SCR reactor. Emiss. Control Sci. Technol. 2, 124–136 (2016)

    Article  Google Scholar 

  45. Kannepalli, S., Bürger, A., Tischer, S., Deutschmann, O.: Model-based optimization of ammonia dosing in NH3-SCR of NO x for transient driving cycle: model development and simulation. Emission Contr. Sci. Technol. 3(4), 249–262 (2017). https://doi.org/10.1007/s40825-017-0072-4

    Article  Google Scholar 

  46. Gundlapally, S.R., Papadimitriou, I., Wahiduzzaman, S., Gu, T.: Development of ECU capable Grey-box models from detailed models—application to a SCR reactor. Emission Contr. Sci. Technol. 2(3), 124–136 (2016). https://doi.org/10.1007/s40825-016-0039-x

    Article  Google Scholar 

  47. Han, S., Ye, Q., Cheng, S., Kang, T., Dai, H.: Effect of the hydrothermal aging temperature and Cu/Al ratio on the hydrothermal stability of CuSSZ-13 catalysts for NH3-SCR. Catal. Sci. Technol. 7(3), 703–717 (2017). https://doi.org/10.1039/C6CY02555B

    Article  Google Scholar 

  48. Karadag, H.G., Bozbag, S.E., Şanli, D., Demir, O., Ozener, B., Hisar, G., Erkey, C.: Mass transfer effects in SCR reactor for NOx abatement in diesel engines. In: Dincer, I., Colpan, C.O., Kizilkan, O. (eds.) Exergetic, energetic and environmental dimensions, pp. 961–979. Academic Press (2018)

  49. GT-SUITE Exhaust Aftertreatment Application Manual. Gamma Technologies LLC. (2018)

  50. Bissett, E.J.: An asymptotic solution for Washcoat pore diffusion in catalytic monoliths. Emission Contr. Sci. Technol. 1(1), 3–16 (2015). https://doi.org/10.1007/s40825-015-0010-2

    Article  Google Scholar 

  51. Fuller, E.N., Schettler, P.D., Giddings, J.C.: A new method for prediciton of binary gas-phase diffusion coefficients. Ind. Eng. Chem. 58(5), 19–27 (1966)

    Article  Google Scholar 

  52. Bozbag, S.E., Simsek, M., Demir, O., Sanli Yildiz, D., Ozener, H.B., Hisar, G., Erkey, C.: Experimental and theoretical study of NH3 adsorption and desorption over a Cu-chabazite NH3-SCR catalyst. Turk. J. Chem. 42, 1768–1780 (2018)

    Article  Google Scholar 

  53. Alayon, E.M.C., Nachtegaal, M., Bodi, A., Ranocchiari, M., van Bokhoven, J.A.: Bis(mu-oxo) versus mono(mu-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation. Phys. Chem. Chem. Phys. 17(12), 7681–7693 (2015). https://doi.org/10.1039/c4cp03226h

    Article  Google Scholar 

  54. Bozbag, S.E., Sot, P., Nachtegaal, M., Ranocchiari, M., van Bokhoven, J.A., Mesters, C.: Direct stepwise oxidation of methane to methanol over Cu–SiO2. ACS Catal. 8(7), 5721–5731 (2018). https://doi.org/10.1021/acscatal.8b01021

    Article  Google Scholar 

  55. Luo, J., Gao, F., Kamasamudram, K., Currier, N., Peden, C.H.F., Yezerets, A., et al.: J. Catal. 348, 291–299 (2017). https://doi.org/10.1016/j.jcat.2017.02.025

    Article  Google Scholar 

  56. Ruggeri, M., Nova, I., Tronconi, E.: Experimental study of the NO oxidation to NO2 over metal promoted zeolites aimed at the identification of the standard SCR rate determining step. Top. Catal. 56(1–8), 109–113 (2013). https://doi.org/10.1007/s11244-013-9937-0

    Article  Google Scholar 

  57. Leistner, K., Xie, K., Kumar, A., Kamasamudram, K., Olsson, L.: Ammonia desorption peaks can be assigned to different copper sites in Cu/SSZ-13. Catal. Lett. 147(8), 1882–1890 (2017). https://doi.org/10.1007/s10562-017-2083-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Erkey.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests..

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozbağ, S.E., Şimşek, M., Demir, O. et al. Assessment of the Single-Site Kinetic Model for NH3-SCR on Cu-Chabazite for the Prediction of NOx Emissions in Dynamometer Tests. Emiss. Control Sci. Technol. 6, 1–16 (2020). https://doi.org/10.1007/s40825-019-00145-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-019-00145-y

Keywords

Navigation