Skip to main content
Log in

Nature and Surface Interactions of Sulfur-Containing Deposits on V2O5-WO3/TiO2 Catalysts for SCR-DeNOx

  • Special Issue: In Recognition of Professor Wolfgang Grünert's Contributions to the Science and Fundamentals of Selective Catalytic Reduction of NOx
  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

Sulfur-containing deposits form on a monolithic V2O5-WO3/TiO2 (VWT) catalyst during SCR-DeNOx with NH3 at 473 and 523 K and pressures up to 500 kPa in the presence of SO2 with sulfate contents of 1.7 to 13.0 wt%. Using thermogravimetric analysis and diffuse reflectance infrared spectroscopy, these deposits are determined to be mainly NH4HSO4 for SCR temperatures > 523 K. At lower temperatures, (NH4)2SO4 is formed. The thermal stability of NH4HSO4 supported on different transition metal oxides including V2O5, WO3, TiO2, MoO3, and Al2O3 varies with decomposition temperatures from 620 to 820 K. Using DFT calculations, it is shown that the thermal stability of supported NH4HSO4 is mainly determined by hydrogen bonding of the HSO4 anions with the metal oxide surface. Increasing electronegativity of the metal atoms of the support oxide leads to weakening of the S-O bonds in the HSO4 anions and to lower decomposition temperatures of the supported NH4HSO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hu, Y., Griffiths, K., Norton, P.R.: Surf. Sci. 603, 1740–1750 (2009)

    Google Scholar 

  2. Selvam, M., Vigneshwaran, M., Irudhayaraj, R., Palani, S.: Indian J. Sci. Technol. 9, (2016)

  3. Brüstle C., Downey M., Subramaniam M., Birckett A., Tomazic D. (Ed.).: Aftertreatment in a Pre-Turbo Position: Size and Fuel Consumption Advantage for Tier 4 Large-Bore Diesel Engines, 2011.

    Google Scholar 

  4. Kröcher, O., Elsener, M., Bothien, M.-R., Dölling, W.: MTZ. 68–73 (2014)

  5. V. Joergl, P. Keller, O. Weber, K. Mueller-Haas, R. Konieczny: SAE Technical paper (2008).

    Google Scholar 

  6. Fujibayashi, T., Baba, S., Tanaka, H.: CIMAC Congress 2013. Shanghai. (2013)

  7. Rammelt, T., Torkashvand, B., Hauck, C., Böhm, J., Gläser, R., Deutschmann, O.: Emiss. Control Sci. Technol. 3, 275–288 (2017)

    Google Scholar 

  8. Bank R., Buchholz B., Harndorf H., Rabe R., Etzien U.: Analyse des Konversionsverhaltens von SCR-Katalysatoren unter den Betriebsbedingungen IMO Tier III konformer Großdieselmotoren, 2. Rostocker Großmotorentagung, Rostock, 17.09.2012.

  9. Dunn, J.P., Jehng, J.-M., Du Kim, S., Briand, L.E., Stenger, H.G., Wachs, I.E.: J. Phys. Chem. B. 102, 6212–6218 (1998)

    Google Scholar 

  10. Svachula, J., Alemany, L.J., Ferlazzo, N., Forzatti, P., Tronconi, E., Bregani, F.: Ind. Eng. Chem. Res. 32, 826–834 (1993)

    Google Scholar 

  11. Kamata, H., Ohara, H., Takahashi, K., Yukimura, A., Seo, Y.: Catal. Lett. 73, 79–83 (2001)

    Google Scholar 

  12. Chen, J.P., Buzanowski, M.A., Yang, R.T., Cichanowicz, J.E.: J. Air Waste Manage. Assoc. 40, 1403–1409 (1990)

    Google Scholar 

  13. Dunn, J.P., Koppula, P.R., Stenger, H.G., Wachs, I.E.: Appl. Catal. B. 19, 103–117 (1998)

    Google Scholar 

  14. Zhang, L., Li, L., Cao, Y., Yao, X., Ge, C., Gao, F., Deng, Y., Tang, C., Dong, L.: Appl. Catal. B. 165, 589–598 (2015)

    Google Scholar 

  15. Magnusson, M., Fridell, E., Ingelsten, H.H.: Appl. Catal. B. 111-112, 20–26 (2012)

    Google Scholar 

  16. Baltin, G., Köser, H., Wendlandt, K.-P.: Catal. Today. 75, 339–345 (2002)

    Google Scholar 

  17. Song, L., Chao, J., Fang, Y., He, H., Li, J., Qiu, W., Zhang, G.: Chem. Eng. J. 303, 275–281 (2016)

    Google Scholar 

  18. Huang, Z.: J. Catal. 214, 213–219 (2003)

    Google Scholar 

  19. Huang, Z., Zhu, Z., Liu, Z.: Appl. Catal. B. 39, 361–368 (2002)

    Google Scholar 

  20. Xu, W., He, H., Yu, Y.: J. Phys. Chem. C. 113, 4426–4432 (2009)

    Google Scholar 

  21. Zang, S., Zhang, G., Qiu, W., Song, L., Zhang, R., He, H.: Chin. J. Catal. 37, 888–897 (2016)

    Google Scholar 

  22. Li, C., Shen, M., Yu, T., Wang, J., Wang, J., Zhai, Y.: Phys. Chem. Chem. Phys. (2017)

  23. Khodayari, R., Ingemar Odenbrand, C.U.: Appl. Catal. B. 33, 277–291 (2001)

    Google Scholar 

  24. Phil, H.H., Reddy, M.P., Kumar, P.A., Ju, L.K., Hyo, J.S.: Appl. Catal. B. 78, 301–308 (2008)

    Google Scholar 

  25. Matsuda, S., Kamo, T., Kato, A., Nakajima, F., Kumura, T., Kuroda, H.: Ind. Eng. Chem. Prod. Res. Dev. 21, 48–52 (1982)

    Google Scholar 

  26. Ji, P., Gao, X., Du, X., Zheng, C., Luo, Z., Cen, K.: Catal. Sci. Technol. 6, 1187–1194 (2016)

    Google Scholar 

  27. Shen, B., Wang, F., Zhao, B., Li, Y., Wang, Y.: J. Ind. Eng. Chem. 33, 262–269 (2016)

    Google Scholar 

  28. Shi, Y.-J., Fan, H.-M., Zhang, Y.-P., Shu, H., Zhang, Y.-h.: L.-j. Yang. Fuel Process. Technol. (2016)

  29. Ye, D., Qu, R., Song, H., Gao, X., Luo, Z., Ni, M., Cen, K.: Chem. Eng. J. 283, 846–854 (2016)

    Google Scholar 

  30. Ye, D., Qu, R., Song, H., Zheng, C., Gao, X., Luo, Z., Ni, M., Cen, K.: RSC Adv. 6, 55584–55592 (2016)

    Google Scholar 

  31. Li, Q., Chen, S., Liu, Z., Liu, Q.: Appl. Catal. B. 164, 475–482 (2015)

    Google Scholar 

  32. Ma, Z., Wu, X., Feng, Y., Si, Z., Weng, D., Shi, L.: Prog. Nat. Sc.i Mat. Int. 25, 342–352 (2015)

    Google Scholar 

  33. Zhu, Z., Niu, H., Liu, Z., Liu, S.: J. Catal. 195, 268–278 (2000)

    Google Scholar 

  34. Li, P., Liu, Q., Liu, Z.: Chem. Eng. J. 181-182, 169–173 (2012)

    Google Scholar 

  35. Thege, I.K.: Thermochim. Acta. 60, 149–159 (1983)

    Google Scholar 

  36. Kosova, D.A., Emelina, A.L., Bykov, M.A.: Thermochim. Acta. 595, 61–66 (2014)

    Google Scholar 

  37. Yang, W., Liu, F., Xie, L., Lian, Z., He, H.: Ind. Eng. Chem. Res. 55, 2677–2685 (2016)

    Google Scholar 

  38. Zhu, Z., Liu, Z., Niu, H., Liu, S., Hu, T., Liu, T., Xie, Y.: J. Catal. 197, 6–16 (2001)

    Google Scholar 

  39. Li, J., Peng, Y., Chang, H., Li, X., Rittenden, J.C., Hao, J.: Front. Environ. Sci. Eng. (2016)

  40. Bai, S., Wang, Z., Li, H., Xu, X., Liu, M.: Fuel. 194, 36–41 (2017)

    Google Scholar 

  41. Wei, L., Cui, S., Guo, H., Ma, X., Zhang, L.: J. Mol. Catal. A Chem. 421, 102–108 (2016)

    Google Scholar 

  42. Wu, Q., Gao, H., He, H.: J. Phys.Chem. B. 110, 8320–8324 (2006)

    Google Scholar 

  43. Du, X., Gao, X., Qiu, K., Luo, Z., Cen, K.: J. Phys. Chem. C. 119, 1905–1912 (2015)

    Google Scholar 

  44. Broclawik, E., Góra, A., Najbar, M.: J. Mol. Catal. A Chem. 166, 31–38 (2001)

    Google Scholar 

  45. te Velde, G., Bickelhaupt, F.M., Baerends, E.J., Fonseca Guerra, C., van Gisbergen, S.J.A., Snijders, J.G., Ziegler, T.: J. Comput. Chem. 22, 931–967 (2001)

    Google Scholar 

  46. Fonseca Guerra, C., Snijders, J.G., te Velde, G., Baerends, E.J.: Theoretical Chemistry Accounts: Theory, Computation, and Modeling. Theor. Chim. Acta. 99, 391–403 (1998)

    Google Scholar 

  47. E.J. Baerends, T. Ziegler, A.J. Atkins, J. Autschbach, et al. ADF2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, https://www.scm.com. Accessed 17 Aug 2019

  48. Du, X., Gao, X., Hu, W., Yu, J., Luo, Z., Cen, K.: J. Phys. Chem. C. 118, 13617–13622 (2014)

    Google Scholar 

  49. Tognetti, V., Morell, C., Joubert, L.: Chem. Phys. Lett. 635, 111–115 (2015)

    Google Scholar 

  50. Seo, P.W., Park, K.H., Hong, S.C.: J. Ind. Eng. Chem. 16, 283–287 (2010)

    Google Scholar 

  51. National Institute of Advanced Industrial Science and Technology, SDBS, available at http://sdbs.db.aist.go.jp (accessed on 12.03.2017).

  52. Li, P., Liu, Z., Li, Q., Wu, W., Liu, Q.: Ind. Eng. Chem. Res. 53, 7910–7916 (2014)

    Google Scholar 

  53. Guo, X., Bartholomew, C., Hecker, W., Baxter, L.L.: Appl. Catal. B. 92, 30–40 (2009)

    Google Scholar 

  54. Lin, X.H., Yin, X.J., Liu, J.Y., Yau Li, S.F.: Appl. Catal. B. 203, 731–739 (2017)

    Google Scholar 

  55. Tsilomelekis, G., Christodoulakis, A., Boghosian, S.: Catal. Today. 127, 139–147 (2007)

    Google Scholar 

  56. Wachs, I.E.: Catalysis. 13, 37–54 (1997)

    Google Scholar 

  57. Wachs, I.E.: Catal. Today. 100, 79–94 (2005)

    Google Scholar 

  58. Dinse, A., Frank, B., Hess, C., Habel, D., Schomäcker, R.: J. Mol. Catal. A Chem. 289, 28–37 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Gläser.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Dedicated to Prof. Dr. Wolfgang Grünert on the occasion of his 70th birthday

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submitted to the Special Issue in Honor of Prof. Dr. Wolfgang Grünert in Emission Control Science and Technology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rammelt, T., Kuc, AB., Böhm, J. et al. Nature and Surface Interactions of Sulfur-Containing Deposits on V2O5-WO3/TiO2 Catalysts for SCR-DeNOx. Emiss. Control Sci. Technol. 5, 297–306 (2019). https://doi.org/10.1007/s40825-019-00142-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-019-00142-1

Keywords

Navigation