Skip to main content
Log in

Evaluation of Mn and Sn-Modified Pd-Ce-Based Catalysts for Low-Temperature Diesel Exhaust Oxidation

  • Special Issue: 2016 CLEERS April 6-8, Ann Arbor, MI, USA
  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

Pd-impregnated Ce-based catalysts were tested for carbon monoxide (CO) and hydrocarbon (HC) oxidation under challenging low-temperature diesel combustion conditions. The results indicate that the light-off temperatures for CO over Pd/CeO2, Pd/MnO x -CeO2 (Pd/MC), and Pd/SnO2-MnO x -CeO2 (Pd/SMC) catalysts shift to higher temperatures in the presence of simulated diesel exhaust gas. The lowest T 50 for CO is observed over Pd/MC at 173 °C, whereas Pd/CeO2 is shown to oxidize most of the HCs at temperatures below 400 °C. In all catalysts, the oxidation of HCs starts right after the onset of CO oxidation, revealing that the competitive adsorption of CO, NO, and alkenes controls the catalytic activity. Further evaluation of the catalytic activity in the presence of only CO and C3H6 reveals the immediate inhibiting effect of C3H6 at catalyst temperatures below 150 °C. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments performed over Pd/CeO2, Pd/MC, and Pd/SMC show that C3H6 inhibits the formation of carbonyl species on Pdn+ sites, which limits the catalytic activity for CO. Such inhibition is observed on all supports, implying that the activity is independent of oxygen storage capacity (OSC) or lattice oxygen reducibility of the supports in the presence of C3H6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Twigg, M.V.: Progress and future challenges in controlling automotive exhaust gas emissions. Appl. Catal. B Environ. 70, 2–15 (2007)

    Article  Google Scholar 

  2. Papavasiliou, A., Tsetsekou, A., Matsouka, V., Konsolakis, M., Yentekakis, I.V., Boukos, N.: Development of a Ce-Zr-La modified Pt/γ-Al2O3 TWCs’ washcoat: effect of synthesis procedure on catalytic behaviour and thermal durability. Appl. Catal. B Environ. 90, 162–174 (2009)

  3. Russell, A., Epling, W.S.: Diesel oxidation catalysts. Catal. Rev. Sci. Eng. 53, 337–423 (2011)

    Article  Google Scholar 

  4. Summers, J.C., Hegedus, L.L.: Effects of platinum and palladium impregnation on the performance and durability of automobile exhaust oxidizing catalysts. J. Catal. 51, 185–192 (1978)

    Article  Google Scholar 

  5. Heck, R.M., Farrauto, R.J.: Automobile exhaust catalysts. Appl. Catal. A Gen. 221, 443–457 (2001)

    Article  Google Scholar 

  6. Gandhi, H.S., Graham, G.W., McCabe, R.W.: Automotive exhaust catalysis. J. Catal. 216, 433–442 (2003)

    Article  Google Scholar 

  7. Summers, J.C., Skowron, J.F., Miller, M.J.: Use of light-off catalysts to meet the California LEV/ULEV standards, SAE Paper 930386, (1993)

  8. Lindner, D., Lox, E.X., van Yperen, R., Ostgathe, K.: Reduction of exhaust gas emissions by using Pd-based three-way catalysts, SAE Paper 960802, (1996)

  9. Cullis, C.F., Willatt, B.M.: Oxidation of methane over supported precious metal catalysts. J. Catal. 83, 267–285 (1983)

    Article  Google Scholar 

  10. Yao, Y.F.Y.: The oxidation of CO and hydrocarbons over noble metal catalysts. J. Catal. 87, 152–162 (1984)

    Article  Google Scholar 

  11. Wang, C., Sasmaz, E., Wen, C., Lauterbach, J.: Pd supported on SnO2–MnOx–CeO2 catalysts for low temperature CO oxidation. Catal. Today 258, 481–486 (2015)

    Article  Google Scholar 

  12. Gandhi, H.S., Shelef, M.: Effects of sulphur on noble metal automotive catalysts. Appl. Catal. 77, 175–186 (1991)

    Article  Google Scholar 

  13. Peterson, E.J., DeLaRiva, A.T., Lin, S., Johnson, R.S., Guo, H., Miller, J.T., Kwak, J., Peden, C., Kiefer, B., Allard, L.F., Ribeiro, F.H., Datye, A.K.: Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 5, 4885–4896 (2014)

    Article  Google Scholar 

  14. Summers, J.C., Sawyer, J.E., Frost, A.C.: The 1990 Clean Air Act and catalytic emission control technology for stationary sources. ACS Symp. Pap. 495, 98–114 (1992)

    Article  Google Scholar 

  15. Kim, M., Kyriakidou, E., Choi, J., Toops, T., Binder, A., Thomas, C., Parks II, J., Schwartz, V., Chen, J., Hensley, D.: Enhancing low-temperature activity and durability of Pd-based diesel oxidation catalysts using ZrO2 supports. Appl. Catal. B Environ. 187, 181–194 (2016)

    Article  Google Scholar 

  16. Binder, A., Toops, T., Unocic, R., Parks II, J., Dai, S.: Low-temperature CO oxidation over a ternary oxide catalyst with high resistance to hydrocarbon inhibition. Angew. Chem. Int. Ed. 54, 13263–13267 (2015)

    Article  Google Scholar 

  17. Muraki, H., Shinjoh, H., Fujitani, Y.: Effect of lanthanum on the no reduction over palladium catalysts. Appl. Catal. 22, 325–335 (1986)

    Article  Google Scholar 

  18. Gandhi, H.S., Piken, A.G., Shelef, M., Delosh, R.G.: Laboratory evaluation of three-way catalysts. SAE Paper 760201, (1976)

  19. Meng, L., Jia, A.P., Lu, J.Q., Luo, L.F., Huang, W.X., Luo, M.F.: Synergetic effects of PdO species on CO oxidation over PdO-CeO2 catalysts. J. Phys. Chem. C 115, 19789–19796 (2011)

    Article  Google Scholar 

  20. Meng, L., Lin, J.J., Pu, Z.Y., Luo, L.F., Jia, A.P., Huang, W.X., Luo, M.F., Lu, J.Q.: Identification of active sites for CO and CH4 oxidation over PdO/Ce1−xPdxO2−δ catalysts. Appl. Catal. B 119, 117–122 (2012)

    Article  Google Scholar 

  21. Boronin, A.I., Slavinskaya, E.M., Danilova, I.G., Gulyaev, R.V., Amosov, Y.I., Kuznetsov, P.A., Polukhina, I.A., Koscheev, S.V., Zaikovskii, V.I., Noskov, A.S.: Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catal. Today 144, 201–211 (2009)

    Article  Google Scholar 

  22. Yao, H.C.: Surface interaction in the Pt/γ-Al2O3 system IV. Additive effects of CeO2 and MoO3. Appl. Surf. Sci. 19, 398–406 (1984)

    Article  Google Scholar 

  23. Wang, J., Shen, M., Wang, J., Wang, W.: Steam effects over Pd/Ce0.67Zr0.33O2 three-way catalyst. J Rare Earths 29, 217–224 (2011)

    Article  Google Scholar 

  24. Han, Z., Wang, J., Yan, H., Shen, M., Wang, J., Wang, W., Yang, M.: Performance of dynamic oxygen storage capacity, water-gas shift and steam reforming reactions over Pd-only three-way catalysts. Catal. Today 158, 481–489 (2010)

    Article  Google Scholar 

  25. Rao, G.R., Fornasiero, P., Di Monte, R., Kašpar, J., Vlaic, G., Balducci, G., Meriani, S., Gubitosa, G., Cremona, A., Graziani, M.: Reduction of no over partially reduced metal-loaded CeO2-ZrO2 solid solutions. J. Catal. 162, 1–9 (1996)

    Article  Google Scholar 

  26. Ozawa, M.: Role of cerium-zirconium mixed oxides as catalysts for car pollution: a short review. J. Alloys. Compd. 275–277, 886–890 (1998)

    Article  Google Scholar 

  27. Ozawa, M., Matuda, K., Suzuki, S.: Microstructure and oxygen release properties of catalytic alumina-supported CeO2-ZrO2 powders. J. Alloys. Compd. 303–304, 56–59 (2000)

    Article  Google Scholar 

  28. The Advanced Combustion and Emission Control (ACEC) Technical Team (2015), Low-temperature oxidation catalyst test protocol, Retrieved from http://cleers.org/acec-lowt/

  29. Tang, X., Li, Y., Huang, X., Xu, Y., Zhu, H., Wang, J., Shen, W.: MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Appl. Catal. B Environ. 62, 265–273 (2006)

    Article  Google Scholar 

  30. Luo, M.F., Hou, Z.Y., Yuan, X.X., Zheng, X.M.: Characterization study of CeO2 supported Pd catalyst for low-temperature carbon monoxide oxidation. Catal. Lett. 50, 205–209 (1998)

    Article  Google Scholar 

  31. Ayastuy, J.L., Iglesias-González, A., Gutiérrez-Ortiz, M.A.: Synthesis and characterization of low amount tin-doped ceria (CexSn1−xO2−δ) for catalytic CO oxidation. Chem. Eng. J. 244, 372–381 (2014)

    Article  Google Scholar 

  32. Truffault, L., Ta, M., Devers, T., Konstantinov, K., Harel, V., Simmonard, C., Andreazza, C., Nevirkovets, I., Pineau, A., Veron, O., Blondeau, J.: Application of nanostructured Ca doped CeO2 for ultraviolet filtration. Mater. Res. Bull. 45, 527–535530 (2010)

    Article  Google Scholar 

  33. Wu, T., Kaden, W., Kunkel, W., Anderson, S.: Size-dependent oxidation of Pdn (n≤13) on alumina/NiAl(110): correlation with Pd core level binding energies. Surf. Sci. 603, 2764–2770 (2009)

    Article  Google Scholar 

  34. Lefort, I., Herreros, J.M., Tsolakis, A.: Reduction of low temperature engine pollutants by understanding the exhaust species interactions in a diesel oxidation catalyst. Environ. Sci. Technol. 48, 2361–2367 (2014)

    Google Scholar 

  35. Al Harbi, M., Hayes, R., Votsmeier, M., Epling, W.S.: Competitive NO, CO and hydrocarbon oxidation reactions over a diesel oxidation catalyst. Can. J. Chem. Eng. 90, 1527–1538 (2012)

    Article  Google Scholar 

  36. Diehl, F., Barbier Jr., J., Duprez, D., Guibard, I., Mabilon, G.: Catalytic oxidation of heavy hydrocarbons over Pt/Al2O3. Influence of the structure of the molecule on its reactivity. Appl. Catal. B 95, 217–227 (2010)

    Article  Google Scholar 

  37. Voltz, S.E., Morgan, C.R., Liederman, D., Jacob, S.M.: Kinetic study of carbon monoxide and propylene oxidation on platinum catalysts. Ind. Eng. Chem. Prod. Res. Dev. 12, 294–301 (1973)

    Article  Google Scholar 

  38. Hu, Z., Liu, X., Meng, D., Guo, Y., Guo, Y., Lu, G.: Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation. ACS Catal. 6, 2265–2279 (2016)

    Article  Google Scholar 

  39. Wang, C., Wen, C., Lauterbach, J, Sasmaz, E.: Superior oxygen transfer ability of Pd/MnOx-CeO2 for enhanced low temperature CO oxidation activity, Applied Catalysis B: Environmental, under review

  40. Royer, S., Duprez, D.: Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem 3, 24–65 (2011)

    Article  Google Scholar 

  41. Zhu, H., Qin, Z., Shan, W., Shen, W., Wang, J.: Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents. J. Catal. 225, 267–277 (2004)

    Article  Google Scholar 

  42. Lin, W., Herzing, A.A., Kiely, C.J., Wachs, I.E.: Probing metal−support interactions under oxidizing and reducing conditions: in situ Raman and infrared spectroscopic and scanning transmission electron microscopic−X-ray energy-dispersive spectroscopic investigation of supported platinum catalysts. J. Phys. Chem. C 112, 5942–5951 (2008)

    Article  Google Scholar 

  43. Martnez-Arias, A., Fernndez-Garca, M., Inglesias-Juez, A., Hungra, A.B., Anderson, J.A., Conesa, J.C., Soria, J.: New Pd/CexZr1−xO2/Al2O3 three-way catalysts prepared by microemulsion: part 2. In situ analysis of CO oxidation and NO reduction under stoichiometric CO+NO+O2. Appl. Catal. B 31, 51–60 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the South Carolina SmartState Center for Strategic Approaches to the Generation of Electricity (SAGE), a SPARC graduate research grant from the University of South Carolina, the University of South Carolina XPS facility, and the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. The authors wish to express their gratitude to program managers Ken Howden, Leo Breton, and Gurpreet Singh for their support. This manuscript has been co-authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US Department of Energy. This research was performed, in part, using instrumentation (FEI Talos F200X STEM) provided by the Department of Energy, Office of Nuclear Energy, Fuel Cycle R&D Program, and the Nuclear Science User Facilities. The authors thank Dr. Michael J. Lance for the elemental mapping and imaging of particles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdem Sasmaz.

Additional information

This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 746 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Binder, A.J., Toops, T.J. et al. Evaluation of Mn and Sn-Modified Pd-Ce-Based Catalysts for Low-Temperature Diesel Exhaust Oxidation. Emiss. Control Sci. Technol. 3, 37–46 (2017). https://doi.org/10.1007/s40825-016-0056-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-016-0056-9

Keywords

Navigation