Skip to main content
Log in

A Robust Numerical Scheme via Grid Equidistribution for Singularly Perturbed Delay Partial Differential Equations Arising in Control Theory

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a model constituting the temperature control of a continuous casting process is considered. This model gives rise to singularly perturbed delay differential equations. This motivated us to construct a robust numerical scheme to solve singularly perturbed parabolic delay convection–diffusion problems exhibiting regular boundary layers. A uniform mesh is used to discretize the domain in the temporal direction, while a non-uniform mesh is used to discretize the spatial variable, which is created by equidistributing a monitor function. For the temporal derivative, the numerical scheme uses the backward Euler scheme, while the space derivative follows the upwind scheme. The truncation error analysis is performed. It is demonstrated that the approach has an optimal error bound and converges uniformly with first-order accuracy in the discrete supremum norm. The theoretical findings are validated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Bansal, K., Mathur, T., Sawaran Singh, N.S., Agarwal, S.: Analysis of illegal drug transmission model using fractional delay differential equations. AIMS Math. 7(10), 18173–18193 (2022)

    Article  MathSciNet  Google Scholar 

  2. Arora, S., Mathur, T., Tiwari, K.: A fractional-order model to study the dynamics of the spread of crime. J. Comput. Appl. Math. 426, 115102–23 (2023)

    Article  MathSciNet  Google Scholar 

  3. Bansal, K., Mathur, T., Agarwal, S.: Fractional-order crime propagation model with non-linear transmission rate. Chaos Solitons Fractals 169, 113321–11340 (2023)

    Article  MathSciNet  Google Scholar 

  4. Wang, P.K.C.: Asymptotic stability of a time-delayed diffusion system. Trans. ASME Ser. E J. Appl. Mech. 30, 500–504 (1963)

    Article  MathSciNet  Google Scholar 

  5. Farrell, P., Hegarty, A., Miller, J.M., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Chapman and hall/CRC, New York (2000)

    Book  Google Scholar 

  6. Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection–Diffusion–Reaction and Flow Problems, vol. 24. Springer, Heidelberg (2008)

    Google Scholar 

  7. Linss, T.: Layer-adapted meshes and FEM for time-dependent singularly perturbed reaction-diffusion problems. Int. J. Comput. Sci. Math. 1(2–4), 259–270 (2007)

    Article  MathSciNet  Google Scholar 

  8. Bullo, T.A., Duressa, G.F., Degla, G.: Accelerated fitted operator finite difference method for singularly perturbed parabolic reaction–diffusion problems. Comput. Methods Differ. Equ. 9(3), 886–898 (2021)

    MathSciNet  Google Scholar 

  9. Kopteva, N., O’Riordan, E.: Shishkin meshes in the numerical solution of singularly perturbed differential equations. Int. J. Numer. Anal. Model. 7(3), 393–415 (2010)

    MathSciNet  Google Scholar 

  10. Linss, T., Stynes, M.: Numerical solution of systems of singularly perturbed differential equations. J. Comput. Methods Appl. Math. 9(2), 165–191 (2009)

    Article  MathSciNet  Google Scholar 

  11. Clavero, C., Gracia, J.L., Stynes, M.: A simpler analysis of a hybrid numerical method for time-dependent convection–diffusion problems. J. Comput. Appl. Math. 235(17), 5240–5248 (2011)

    Article  MathSciNet  Google Scholar 

  12. Singh, M.K., Natesan, S.: Numerical analysis of singularly perturbed system of parabolic convection-diffusion problem with regular boundary layers. Differ. Equ. Dyn. Syst. 30, 695–717 (2022)

    Article  MathSciNet  Google Scholar 

  13. Gowrisankar, S., Natesan, S.: Robust numerical scheme for singularly perturbed convection-diffusion parabolic initial-boundary-value problems on equidistributed grids. Comput. Phys. Commun. 185(7), 2008–2019 (2014)

    Article  MathSciNet  Google Scholar 

  14. Beckett, G., Mackenzie, J.A.: Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. Appl. Numer. Math. 35(2), 87–109 (2000)

    Article  MathSciNet  Google Scholar 

  15. Kopteva, N., Stynes, M.: A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39(4), 1446–1467 (2001)

    Article  MathSciNet  Google Scholar 

  16. Gowrisankar, S., Natesan, S.: \(\varepsilon \)-uniformly convergent numerical scheme for singularly perturbed delay parabolic partial differential equations. Int. J. Comput. Math. 94(5), 902–921 (2017)

    Article  MathSciNet  Google Scholar 

  17. Ansari, A.R., Bakr, S.A., Shishkin, G.I.: A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations. J. Comput. Appl. Math. 205(1), 552–566 (2007)

    Article  MathSciNet  Google Scholar 

  18. Das, A., Natesan, S.: Uniformly convergent hybrid numerical scheme for singularly perturbed delay parabolic convection-diffusion problems on Shishkin mesh. Appl. Math. Comput. 271, 168–186 (2015)

    MathSciNet  Google Scholar 

  19. Das, A., Natesan, S.: Uniformly convergent numerical method for singularly perturbed 2D delay parabolic convection-diffusion problems on Bakhvalov-Shishkin mesh. Int. J. Math. Model. Numer. Optim. 8(4), 305–330 (2018)

    Google Scholar 

  20. Das, A., Natesan, S.: Fractional step method for singularly perturbed 2D delay parabolic convection diffusion problems on Shishkin mesh. Int. J. Appl. Comput. Math. 4(2), 65–23 (2018)

    Article  MathSciNet  Google Scholar 

  21. Woldaregay, M.M., Duressa, G.F.: Robust mid-point upwind scheme for singularly perturbed delay differential equations. Comput. Appl. Math. 40(5), 178–12 (2021)

    Article  MathSciNet  Google Scholar 

  22. Woldaregay, M.M., Aniley, W., Duressa, G.F.: Fitted numerical scheme for singularly perturbed convection-diffusion reaction problems involving delays. Theoret. Appl. Mech. 48(2), 171–186 (2021)

    Article  Google Scholar 

  23. Woldaregay, M.M., Duressa, G.F.: Accurate numerical scheme for singularly perturbed parabolic delay differential equation. BMC. Res. Notes 14(1), 358 (2021)

    Article  Google Scholar 

  24. Woldaregay, M.M., Duressa, G.F.: Robust numerical scheme for solving singularly perturbed differential equations involving small delays. Appl. Math. E-Notes 21, 622–633 (2021)

    MathSciNet  Google Scholar 

  25. Anilay, W.T., Duressa, G.F., Woldaregay, M.M.: Higher order uniformly convergent numerical scheme for singularly perturbed reaction-diffusion problems. Kyungpook Math. J. 61(3), 591–612 (2021)

    MathSciNet  Google Scholar 

  26. Woldaregay, M.M., Duressa, G.F.: Uniformly convergent numerical method for singularly perturbed delay parabolic differential equations arising in computational neuroscience. Kragujev. J. Math. 46(1), 65–84 (2022)

    Article  MathSciNet  Google Scholar 

  27. Woldaregay, M.M.: Solving singularly perturbed delay differential equations via fitted mesh and exact difference method. Res. Math. 9(1), 2109301–13 (2022)

    Article  MathSciNet  Google Scholar 

  28. Woldaregay, M.M., Duressa, G.F.: Almost second-order uniformly convergent numerical method for singularly perturbed convection–diffusion–reaction equations with delay. Appl. Anal. 102(2), 651–671 (2023)

    Article  MathSciNet  Google Scholar 

  29. Kabeto, M.J., Duressa, G.F.: Robust numerical method for singularly perturbed semilinear parabolic differential difference equations. Math. Comput. Simulation 188, 537–547 (2021)

    Article  MathSciNet  Google Scholar 

  30. Gowrisankar, S., Natesan, S.: A robust numerical scheme for singularly perturbed delay parabolic initial-boundary-value problems on equidistributed grids. Electron. Trans. Numer. Anal. 41, 376–395 (2014)

    MathSciNet  Google Scholar 

  31. Kumar, D., Kumari, P.: A parameter-uniform numerical scheme for the parabolic singularly perturbed initial boundary value problems with large time delay. J. Appl. Math. Comput. 59, 179–206 (2019)

    Article  MathSciNet  Google Scholar 

  32. Kumar, D., Kumari, P.: A parameter-uniform scheme for singularly perturbed partial differential equations with a time lag. Numer. Methods Partial Differ. Equ. 36(4), 868–886 (2020)

    Article  MathSciNet  Google Scholar 

  33. Woldaregay, M.M., Tilahun, A.W., Duressa, G.F.: Novel numerical scheme for singularly perturbed time delay convection-diffusion equation. Adv. Math. Phys. 9, 1–13 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Funding

No fund has been received for the current investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Das.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepika, P., Das, A. A Robust Numerical Scheme via Grid Equidistribution for Singularly Perturbed Delay Partial Differential Equations Arising in Control Theory. Int. J. Appl. Comput. Math 10, 72 (2024). https://doi.org/10.1007/s40819-024-01716-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-024-01716-6

Keywords

Mathematics Subject Classification

Navigation