Skip to main content
Log in

Approximation of the Geodesic Curvature and Applications for Spherical Geometric Subdivision Schemes

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Many applications of geometry modelling and computer graphics necessite accurate curvature estimations of curves on the plane or on manifolds. In this paper, we define the notion of the discrete geodesic curvature of a geodesic polygon on a smooth surface. We show that, when a geodesic polygon P is closely inscribed on a \(C^2\)-regular curve, the discrete geodesic curvature of P estimates the geodesic curvature of C. This result allows us to evaluate the geodesic curvature of discrete curves on surfaces. In particular, we apply such result to planar and spherical 4-point angle-based subdivision schemes. We show that such schemes cannot generate in general \(G^2\)-continuous curves. We also give a novel example of \(G^2\)-continuous subdivision scheme on the unit sphere using only points and discrete geodesic curvature called curvature-based 6-point spherical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Morvan, Jean-Marie.: Generalized Curvatures, 1st edn. Springer, Berlin (2008)

    Book  Google Scholar 

  2. Borrelli, V., Cazal, F., Morvan, J.M.: On the angular defect of triangulations and the pointwise approximation of curvatures. Comput. Aided Geom. Des. 20, 319–341 (2003)

    Article  MathSciNet  Google Scholar 

  3. Borrelli, V., Orgeret, F.: Error term in pointwise approximation of the curvature of a curve. Comput. Aided Geom. Des. 27, 538–550 (2010)

    Article  MathSciNet  Google Scholar 

  4. Saba, Marianna, Schneider, Teseo, Hormann, Kai, Scateni, Riccardo: Curvature-based blending of closed planar curves. Graph. Models 76(5), 263–272 (2014)

    Article  Google Scholar 

  5. Hirano, Masahiro, Watanabe, Yoshihiro, Ishikawa, Masatoshi: Rapid blending of closed curves based on curvature flow. Comput. Aided Geom. Des. 52–53, 217–230 (2017)

    Article  MathSciNet  Google Scholar 

  6. Dyn, N., Hormann, K.: Geometric conditions for tangent continuity of interpolatory planar subdivision curves. Comput. Aided Geom. Des. 29, 332–347 (2012)

    Article  MathSciNet  Google Scholar 

  7. Séquin, Carlo H., Lee, Kiha, Yen, Jane: Fair, \(G^2\)- and \(C^2\)-continuous circle splines for the interpolation of sparse data points. Comput. Aided Des. 37, 201–211 (2005)

    Article  Google Scholar 

  8. Deng, C., Wang, G.: Incenter subdivision scheme for curve interpolation. Comput. Aided Geom. Des. 27, 48–59 (2010)

    Article  MathSciNet  Google Scholar 

  9. Deng, C., Ma, W.: A biarc based subdivision scheme for space curve interpolation. Comput. Aided Geom. Des. 31, 656–673 (2014)

    Article  MathSciNet  Google Scholar 

  10. Volontè, E.: Subdivision Schemes for Curve Design and Image Analysis, Doctoral Dissertation submitted to Università degli Studi Milano Bicocca and Università della Svizzera italiana (2017)

  11. Bellaihou, M., Ikemakhen, A.: Spherical interpolatory geometric subdivision schemes. Comput. Aided Geom. Des. 80, 101871 (2020)

    Article  MathSciNet  Google Scholar 

  12. Ikemakhen, A., Bellaihou, M., Ahanchaou, T.: Morphing of spherical closed curves. Comput. Aided Geom. Des. 87, 101993 (2021)

    Article  MathSciNet  Google Scholar 

  13. Ikemakhen, A., Ahanchaou, T.: Blending of hyperbolic closed curves. Comput. Graph. Forum 40(5), 71–79 (2021)

    Article  Google Scholar 

  14. Legendre, A.L.: Sur les opérations trigonométriques dont les résultats dépendent de la figure de la terre. Mém. de l’Acad. de Paris 352 ff (1787)

  15. Nádeník, Z.: Legendre theorem on spherical triangles. Research Institute of Geodesy Topography and Cartography (2002)

  16. Sabin, M.A., Dodgson, N.A.: A circle-preserving variant of the four-point subdivision scheme. Mathematical Methods for Curves and Surfaces: Tromsø, pp. 275–286 (2004)

  17. Cashman, T.J., Hormann, K., Reif, U.: Generalized Lane–Riesenfeld algorithms. Comput. Aided Geom. Des. 30(4), 398–409 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bellaihou.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Appendix

A. Appendix

Let \(P^j:=\{p_i^j \, \in {\mathbb {R}}^2 \}\) and

$$\begin{aligned} \alpha _{i}^{j}:=\sphericalangle (\overrightarrow{p_{i-1}^{j}p_{i+1}^{j}},\overrightarrow{p_{i-1}^{j}p_{i}^{j}}), \qquad \beta _{i}^{j}:=\sphericalangle (\overrightarrow{p_{i}^{j}p_{i+1}^{j}},\overrightarrow{p_{i-1}^{j}p_{i+1}^{j}}), \qquad \delta _{i}^{j}:=\sphericalangle (\overrightarrow{p_{i}^{j}p_{i+1}^{j}},\overrightarrow{p_{i-1}^{j}p_{i}^{j}}). \end{aligned}$$

The planar angle-based 4-point scheme [6] is defined by:

$$\begin{aligned} \left\{ \begin{aligned}&p_{2i}^{j+1}=p_{i}^{j}, \\&p_{2i+1}^{j+1}=\displaystyle p_i^j+\frac{1}{2cos(\alpha _{2i+1}^{j+1})}\, R(\alpha _{2i+1}^{j+1})\, (p_{i+1}^j-p_i^j),\\ \end{aligned} \right. \end{aligned}$$
(24)

where

$$\begin{aligned} \alpha _{2i+1}^{j+1}=\beta _{2i+1}^{j+1}=\displaystyle \frac{\delta _{i}^{j}+\delta _{i+1}^{j}}{8}, \end{aligned}$$

and \(R(\alpha _{2i+1}^{j+1})\) is the rotation matrix by angle \(\alpha _{2i+1}^{j+1}\). We have:

Proposition A.1

Let \(P^0=\{p_{-2},p_{-1},p,p_1,p_2\}\) be a planar polygon with equal edge lengths. If \(\delta _{-1}^0=\delta _1^0\) and \(\delta _{0}^0 \ne \delta _{1}^0\) (see Fig. 13), then \(\displaystyle \lim _{j \rightarrow \infty }\, \frac{\delta _0^{j}}{e_0^{j}}=\pm \infty \).

Fig. 13
figure 13

A first iteration of the polygon \(P^0\)

Proof

In the planar case, Eq. (22) become

$$\begin{aligned} \left\{ \begin{aligned}&\delta _{2i-1}^{j+1}=\displaystyle \frac{\delta _{i-1}^j+\delta _{i}^j}{4},\\&\delta _{2i}^{j+1}=\frac{-\delta _{i-1}^j+6\delta _i^j-\delta _{i+1}^j}{8},\\&\delta _{2i+1}^{j+1}=\displaystyle \frac{\delta _i^j+\delta _{i+1}^j}{4}. \end{aligned} \right. \end{aligned}$$
(25)

If we set \(A=\begin{pmatrix} 2&{}2&{}0\\ -1&{}6&{}-1\\ 0&{}2&{}2\\ \end{pmatrix}\), then the above system becomes

$$\begin{aligned} \displaystyle \begin{pmatrix} \delta _{2i-1}^{j+1}\\ \delta _{2i}^{j+1}\\ \delta _{2i+1}^{j+1}\\ \end{pmatrix}=\frac{1}{8} A \begin{pmatrix} \delta _{i-1}^{j}\\ \delta _{i}^{j}\\ \delta _{i+1}^j\\ \end{pmatrix}. \end{aligned}$$

Without losing generality, we can suppose that \(i=0\). We get

$$\begin{aligned} \displaystyle \begin{pmatrix} \delta _{-1}^{j+1}\\ \delta _{0}^{j+1}\\ \delta _{1}^{j+1}\\ \end{pmatrix}=\frac{1}{8} A \begin{pmatrix} \delta _{-1}^{j}\\ \delta _{0}^{j}\\ \delta _{1}^j\\ \end{pmatrix}. \end{aligned}$$

Hence

$$\begin{aligned} \displaystyle \begin{pmatrix} \delta _{-1}^{j}\\ \delta _{0}^{j}\\ \delta _{1}^{j}\\ \end{pmatrix}=\frac{1}{2^{3j}} A^j \begin{pmatrix} \delta _{-1}^{0}\\ \delta _{0}^{0}\\ \delta _{1}^0\\ \end{pmatrix}. \end{aligned}$$

Finally we obtain

$$\begin{aligned} \left\{ \begin{aligned} \displaystyle&\delta _{-1}^j=\Big ( \frac{-j}{2^{j+2}}+\frac{1}{2^{j+1}}+\frac{1}{2^{2j+1}}\Big ) \delta _{-1}^0+\frac{j}{2^{j+1}}\delta _{0}^0+ \Big ( \frac{-j}{2^{j+2}}+\frac{1}{2^{j+1}}- \frac{1}{2^{2j+1}} \Big )\delta _{1}^1,\\&\delta _0^j=\frac{-j}{2^{j+2}}\delta _{-1}^0+\frac{6}{2^{j+2}}\delta _{0}^0-\frac{-j}{2^{j+2}}\delta _{1}^0,\\&\delta _1^j=\Big ( \frac{-j}{2^{j+2}}+\frac{1}{2^{j+1}}-\frac{1}{2^{2j+1}}\Big ) \delta _{-1}^0+\frac{j}{2^{j+1}}\delta _{0}^0+ \Big ( \frac{-j}{2^{j+2}}+\frac{1}{2^{j+1}}+ \frac{1}{2^{2j+1}} \Big )\delta _{1}^1.\\ \end{aligned} \right. \end{aligned}$$
(26)

Since \(\delta _{-1}^0=\delta _1^0\), Eq. (26) become

$$\begin{aligned} \left\{ \begin{aligned}&\delta _0^j=\displaystyle \frac{2+j}{2^{j+1}} \delta _0^0-\frac{j}{2^{j+1}}\delta _1^0,\\&\delta _1^j= \frac{j}{2^{j+1}} \delta _0^0+\frac{2-j}{2^{j+1}}\delta _1^0.\\ \end{aligned} \right. \end{aligned}$$

On the other hand, we have \(\alpha _1^j=\alpha _{-1}^j=\displaystyle \frac{\delta _0^{j-1}+\delta _1^{j-1}}{8}\), then

$$\begin{aligned} \alpha _1^j=\displaystyle \frac{j(\delta _0^0-\delta _1^0)}{2^{j+2}}+\frac{2}{2^{j+2}}\delta _1^0. \end{aligned}$$
(27)

Let \(e_0^j:=\Vert p_1^j-p\Vert =\Vert p_{-1}^j-p\Vert \). Since \(e_0^{j+1}=\displaystyle \frac{e_0^j}{2\, cos(\alpha _1^{j+1})}\), this yields

$$\begin{aligned} e_0^j=\displaystyle \frac{e_0^0}{2^j} \prod _{k=1}^{j} cos(\alpha _1^k)^{-1}. \end{aligned}$$

Finally

$$\begin{aligned} \displaystyle \frac{ \delta _0^j}{ e_0^j}&=\frac{\displaystyle \frac{2+j}{2^{j+1}} \delta _0^0-\frac{j}{2^{j+1}}\delta _1^0 }{\displaystyle \frac{e_0^0}{2^j} \prod _{k=1}^{j} cos(\alpha _1^k)^{-1}}\end{aligned}$$
(28)
$$\begin{aligned}&=\displaystyle \frac{ j(\delta _0^0-\delta _1^0) +2\delta _0^0 }{2e_0^0\, \displaystyle \prod _{k=1}^{j} cos(\alpha _1^k)^{-1}}. \end{aligned}$$
(29)

By (27), the series \(\displaystyle \sum _{j}\, |\alpha _1^j|\) is convergent, then \(\displaystyle \sum _{j}\, (\alpha _1^j)^2\) is also convergent. By equivalence, the product \(\displaystyle \prod _{k=1}^{j} \Bigg ( 1-\frac{(\alpha _1^k)^2}{8}\Bigg )^{-1}\) is also convergent and so is \(\displaystyle \prod _{k=1}^{j} cos(\alpha _1^k)^{-1}\). Finally, \(\displaystyle \lim _{j \rightarrow \infty }\, \frac{\delta _0^{j}}{e_0^{j}}=\pm \infty \) once \(\delta _{0}^0 \ne \delta _{1}^0\) (depends on the sign of \((\delta _0^0-\delta _1^0)\)). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellaihou, M., Ikemakhen, A. & Ahanchaou, T. Approximation of the Geodesic Curvature and Applications for Spherical Geometric Subdivision Schemes. Int. J. Appl. Comput. Math 10, 79 (2024). https://doi.org/10.1007/s40819-024-01700-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-024-01700-0

Keywords

Navigation