Skip to main content
Log in

Stability, Bifurcation, and Traveling Wave Solutions to the Generalized Time-Fractional Burgers-Huxley Equation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In the field of mathematical sciences and engineering, traveling wave solutions play a crucial role in illustrating numerous nonlinear physical problems. Besides, fractional-order nonlinear partial differential equations demonstrate nonlinear physical phenomena more accurately. As a result, research investigations on fractional-order derivatives and fractional differential equations have been of recent interest. In our article, we investigate the generalized time-fractional Burgers-Huxley equation by means of the improved Bernoulli sub-equation function method and the concept of conformable fractional derivative. Additionally, we study the bifurcation analysis of the dynamical system as well as the stability of the equilibria. The study explores the combination of numerous parameters that provide distinct solutions. Here, the calculations and depiction of graphs are done by the mathematical software MAPLE. It is expected that the investigation will be helpful in describing nonlinear physical phenomena including shock waves, traffic flow, and acoustic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The data used to support the findings of this study can be obtained from the corresponding author upon request.

Code availability

The code can be obtained from the corresponding author upon request.

References

  1. Gill, V., Modi, K., Singh, Y.: Analytic solutions of fractional differential equation associated with RLC electrical circuit. J. Stat. Manag. Syst. 21(4), 575–582 (2018)

    Google Scholar 

  2. Singh, Y., Gill, V., Singh, J., Kumar, D., Khan, I.: Computable generalization of fractional kinetic equation with special functions. J. King Saud Univ.-Sci. 33(1), 101221 (2021)

    Article  Google Scholar 

  3. Gill, V., Singh, Y., Kumar, D., Singh, J.: Analytical study for fractional order mathematical model of concentration of Ca2+ in astrocytes cell with a composite fractional derivative. J. Multiscale Model. 11(03), 2050005 (2020)

    Article  MathSciNet  Google Scholar 

  4. Alquran, M., Al-Khaled, K., Sivasundaram, S., Jaradat, H.M.: Mathematical and numerical study of existence of bifurcations of the generalized fractional Burgers-Huxley equation. Nonlinear Stud. 24(1), 235–244 (2017)

    MathSciNet  Google Scholar 

  5. Ali, M., Alquran, M., Jaradat, I.: Explicit and approximate solutions for the conformable-Caputo time-fractional diffusive Predator-Prey model. Int. J. Appl. Comput. Math. 7(3), 90 (2021)

    Article  MathSciNet  Google Scholar 

  6. Alquran, M., Yousef, F., Alquran, F., Sulaiman, T.A., Yusuf, A.: Dual-wave solutions for the quadratic–cubic conformable-Caputo time-fractional Klein–Fock–Gordon equation. Math. Comput. Simul. 185, 62–76 (2021)

    Article  MathSciNet  Google Scholar 

  7. Chen, W.C.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 36(5), 1305–1314 (2008)

    Article  Google Scholar 

  8. Ferdi, Y.: Some applications of fractional order calculus to design digital filters for biomedical signal processing. J. Mech. Med. Biol. 12(02), 1240008 (2012)

    Article  Google Scholar 

  9. Odibat, Z., Momani, S.: The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics. Comput. Math. Appl. 58(11–12), 2199–2208 (2009)

    Article  MathSciNet  Google Scholar 

  10. Xu, H.: Analytical approximations for a population growth model with fractional order. Commun. Nonlinear Sci. Numer. Simul. 14(5), 1978–1983 (2009)

    Article  Google Scholar 

  11. Murtaza, S., Ahmad, Z., Ali, I.E., Akhtar, Z., Tchier, F., Ahmad, H., Yao, S.W.: Analysis and numerical simulation of fractal-fractional order non-linear couple stress nanofluid with cadmium telluride nanoparticles. J. King Saud Univ.-Sci. 35(4), 102618 (2023)

    Article  Google Scholar 

  12. Murtaza, S., Kumam, P., Sutthibutpong, T., Suttiarporn, P., Srisurat, T., Ahmad, Z.: Fractal‐fractional analysis and numerical simulation for the heat transfer of ZnO+ Al2O3+ TiO2/DW based ternary hybrid nanofluid. ZAMM‐J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik. e202300459 (2023)

  13. Murtaza, S., Kumam, P., Ahmad, Z., Sitthithakerngkiet, K., Sutthibutpong, T.: Fractional model of Brinkman-type nanofluid flow with fractional order Fourier's and Fick's laws. Fractals 31, 2340199 (2023)

    Article  Google Scholar 

  14. Murtaza, S., Kumam, P., Ahmad, Z., Seangwattana, T., Ali, I.E.: Numerical analysis of newly developed fractal-fractional model of Casson fluid with exponential memory. Fractals 30(05), 2240151 (2022)

    Article  Google Scholar 

  15. Salam, M.A., Habiba, U.: Application of the improved Kudryashov method to solve the fractional nonlinear partial differential equations. J. Appl. Math. Phys. 7(04), 912 (2019)

    Article  Google Scholar 

  16. Taghizadeh, N., Mirzazadeh, M., Paghaleh, A.S., Vahidi, J.: Exact solutions of nonlinear evolution equations by using the modified simple equation method. Ain Shams Eng. J. 3(3), 321–325 (2012)

    Article  Google Scholar 

  17. Wu, G.C.: Applications of the variational iteration method to fractional diffusion equations: local versus nonlocal Ones. Int. Rev. Chem. Eng. 4(5), 505–510 (2012)

    Google Scholar 

  18. Wazwaz, A.M.: A sine-cosine method for handling nonlinear wave equations. Math. Comp. Model. 40(5–6), 499–508 (2004)

    Article  MathSciNet  Google Scholar 

  19. Zayed, E.M.E., Alurrfi, K.A.E.: The modified Kudryashov method for solving some seventh order nonlinear PDEs in mathematical physics. World J. Model. Simul. 11, 308–319 (2015)

    Google Scholar 

  20. Liu, X.: The traveling wave solutions of space-time fractional differential equation using fractional Riccati expansion method. J. Appl. Math. Phys. 6(10), 1957 (2018)

    Article  Google Scholar 

  21. Liao, S.J., Chwang, A.T.: Application of homotopy analysis method in nonlinear oscillations. J. Appl. Mech. 65, 914–922 (1998)

    Article  MathSciNet  Google Scholar 

  22. Zheng, B.: (G′/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 58(5), 623 (2012)

    Article  MathSciNet  Google Scholar 

  23. Roshid, H.O., Akbar, M.A., Alam, M.N., Hoque, M.F., Rahman, N.: New extended (G’/G)-expansion method to solve nonlinear evolution equation: the (3+ 1)-dimensional potential-YTSF equation. Springerplus 3, 1–6 (2014)

    Article  Google Scholar 

  24. Ala, V., Demirbilek, U., Mamedov, K.R.: An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional SRLW equation. AIMS Math. 5(4), 3751–3761 (2020)

    Article  MathSciNet  Google Scholar 

  25. Bulut, H., Gülnur, Y., BAŞKONUŞ, H. M.: An application of improved Bernoulli sub-equation function method to the nonlinear time-fractional burgers equation. Turkish J. Math. Comp. Sci.. 5, 1–7 (2016)

  26. Ala, V., Demirbilek, U., Mamedov, K. R.: On the exact solutions to conformable equal width wave equation by improved Bernoulli sub-equation function method. J. Southern Ural State Univ. Ser. Math. Mech. Phys. 13(3), 5–13 (2021)

  27. Atangana, A., Baleanu, D., Alsaedi, A.: New properties of conformable derivative. Open Math. 13(1), 000010151520150081 (2015)

    Article  MathSciNet  Google Scholar 

  28. Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  Google Scholar 

  29. Sadek, L., Abouzaid, B., Sadek, E.M., Alaoui, H.T.: Controllability, observability and fractional linear-quadratic problem for fractional linear systems with conformable fractional derivatives and some applications. Int. J. Dyn. Control. 11(1), 214–228 (2023)

    Article  MathSciNet  Google Scholar 

  30. Butt, A.R., Zaka, J., Akgül, A., El Din, S.M.: New structures for exact solution of nonlinear fractional Sharma-Tasso-Olever equation by conformable fractional derivative. Results Phys. 50, 106543 (2023)

    Article  Google Scholar 

  31. Wang, K.J., Shi, F., Liu, J.H., Si, J.: Application of the extended F-expansion method for solving the fractional Gardner equation with conformable fractional derivative. Fractals 30(07), 2250139 (2022)

    Article  Google Scholar 

  32. Hussain, A., Bano, S., Khan, I., Baleanu, D., Sooppy Nisar, K.: Lie symmetry analysis, explicit solutions and conservation laws of a spatially two-dimensional Burgers-Huxley equation. Symmetry. 12(1), 170 (2020)

    Article  Google Scholar 

  33. Inc, M., Partohaghighi, M., Akinlar, M.A., Agarwal, P., Chu, Y.M.: New solutions of fractional-order Burger-Huxley equation. Results Phys. 18, 103290 (2020)

    Article  Google Scholar 

  34. Hadhoud, A.R., Abd Alaal, F.E., Abdelaziz, A.A., Radwan, T.: Numerical treatment of the generalized time-fractional Huxley-Burgers’ equation and its stability examination. Demonstratio Math. 54(1), 436–451 (2021)

    Article  MathSciNet  Google Scholar 

  35. Akram, T., Iqbal, A., Kumam, P., Sutthibutpong, T.: A newly constructed numerical approximation and analysis of Generalized fractional Burger-Huxley equation using higher order method. Results Phys. 107119 (2023)

  36. Freihet, A.A., Zuriqat, M.: Analytical solution of fractional Burgers-Huxley equations via residual power series method. Lobachevskii J. Math. 40, 174–182 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Mathematics, Mawlana Bhashani Science and Technology University, Bangladesh, for providing necessary facilities during this work.

Funding

There is no financial support for this work from any organization.

Author information

Authors and Affiliations

Authors

Contributions

UH wrote the main manuscript text, MAS reviewed the final manuscript and KK and sketched the figures and gives the explanation.

Corresponding author

Correspondence to Umme Habiba.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habiba, U., Salam, M.A. & Khan, K. Stability, Bifurcation, and Traveling Wave Solutions to the Generalized Time-Fractional Burgers-Huxley Equation. Int. J. Appl. Comput. Math 10, 62 (2024). https://doi.org/10.1007/s40819-024-01698-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-024-01698-5

Keywords

Navigation