Skip to main content
Log in

A Mixed Finite Element Method for Solving the Time-Fractional-Darcy Equation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Darcy flow is an important mathematical model to describe a fluid through a porous media. Many research reveal fractional model is an alternative approach to simulate the porous medium flow. To seek more accurate mathematical model for this type of flow, a novel Time-Fractional-Darcy equation is investigated and numerically solved in this paper. The finite difference method is utilized to discrete the temporal fractional derivative. For pursuing higher calculate accuracy and better numerical stability, the fully coupled mixed finite element methods with stabilized terms are proposed in space. The effectiveness and accuracy of the presented methodology are consistently demonstrated by 2D and 3D numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1–2), 57–74 (2002)

    Article  MathSciNet  Google Scholar 

  2. Thomas, S.: Enhanced oil recovery-an overview. Oil Gas Sci. Technol. Revue de l’IFP. 63(1), 9–19 (2008)

    Article  Google Scholar 

  3. Li, R., Gao, Y., Li, J., Chen, Z.X.: A weak Galerkin finite element method for a coupled Stokes-Darcy problem on general meshes. J. Comput. Appl. Math. 334, 111–127 (2018)

    Article  MathSciNet  Google Scholar 

  4. Li, Y., Hou, Y.R., Layton, W., Zhao, H.Y.: Adaptive partitioned methods for the time-accurate approximation of the evolutionary Stokes-Darcy system. Comput. Methods Appl. Mech. Eng. 364, 112923 (2020)

    Article  MathSciNet  Google Scholar 

  5. Masud, A., Hughes, T.J.R.: A stabilized mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Eng. 191(39–40), 4341–4370 (2002)

    Article  MathSciNet  Google Scholar 

  6. Correa, M.R., Loula, A.F.D.: Unconditionally stable mixed finite element methods for Darcy flow. Comput. Methods Appl. Mech. Eng. 197(17–18), 1525–1540 (2008)

    Article  MathSciNet  Google Scholar 

  7. Ansari, S.U., Hussain, M., Ahmad, S.M., Rashid, A., Mazhar, S.: Stabilized mixed finite element method for transient Darcy flow. Trans. Can. Soc. Mech. Eng. 41(1), 85–97 (2017)

    Article  Google Scholar 

  8. Thoi, T.N., Sheikholeslami, M., Shah, Z., Kumam, P., Shafee, A.: Magnetohydrodynamic nanofluid radiative thermal behavior by means of Darcy law inside a porous media. Sci. Rep. 9(1), 1–11 (2019)

    Google Scholar 

  9. Seymour, J.D., Gage, J.P., Codd, S.L., Gerlach, R.: Anomalous fluid transport in porous media induced by biofilm growth. Phys. Rev. Lett. 93(19), 198103 (2004)

    Article  Google Scholar 

  10. Zhang, X.G., Liu, L.S., Wu, Y.H., Wiwatanapataphee, B.: Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion. Appl. Math. Lett. 66, 1–8 (2017)

    Article  MathSciNet  Google Scholar 

  11. Weron, A., Janczura, J., Boryczka, E., Sungkaworn, T., Calebiro, D.: Statistical testing approach for fractional anomalous diffusion classification. Phys. Rev. E 99(4), 042149 (2019)

    Article  Google Scholar 

  12. Ezzat, M.A.: Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Physica B 405(19), 4188–4194 (2010)

    Article  Google Scholar 

  13. Qiao, L.J., Tang, B.: An accurate, robust, and efficient finite difference scheme with graded meshes for the time-fractional burgers equation. Appl. Math. Lett. 128, 107908 (2022)

    Article  MathSciNet  Google Scholar 

  14. Han, C., Wang, Y.L., Li, Z.Y.: A high-precision numerical approach to solving space fractional Gray-Scott model. Appl. Math. Lett. 125, 107759 (2022)

    Article  MathSciNet  Google Scholar 

  15. Gupta, R., Kumar, S.: Chebyshev spectral method for the variable-order fractional mobile-immobile advection-dispersion equation arising from solute transport in heterogeneous media. J. Eng. Math. (2023). https://doi.org/10.1007/s10665-023-10288-1

    Article  MathSciNet  Google Scholar 

  16. Gupta, R., Kumar, S.: Space-time pseudospectral method for the variable-order space-time fractional diffusion equation. Math. Sci. (2023). https://doi.org/10.1007/s40096-023-00510-7

    Article  Google Scholar 

  17. Lin, Z., Wang, D.D., Qi, D.L., Deng, L.K.: A Petrov-Galerkin finite element-meshfree formulation for multi-dimensional fractional diffusion equations. Comput. Mech. 66(2), 323–350 (2020)

    Article  MathSciNet  Google Scholar 

  18. Lin, Z., Liu, F.W., Wang, D.D., Gu, Y.T.: Reproducing kernel particle method for two-dimensional time-space fractional diffusion equations in irregular domains. Eng. Anal. Boundary Elem. 97, 131–143 (2018)

    Article  MathSciNet  Google Scholar 

  19. Bansu, H., Kumar, S.: Numerical solution of space-time fractional Klein-Gordon equation by radial basis functions and Chebyshev polynomials. Int. J. Appl. Comput. Math. 7, 201 (2021). https://doi.org/10.1007/s40819-021-01139-7

    Article  MathSciNet  Google Scholar 

  20. Saw, V., Kumar, S.: The Chebyshev collocation method for a class of time fractional convection-diffusion equation with variable coefficients. Math. Methods Appl. Sci. 44(8), 6666–6678 (2021)

    Article  MathSciNet  Google Scholar 

  21. Huang, C.B., Stynes, M.: \(\alpha \)-robust error analysis of a mixed finite element method for a time-fractional biharmonic equation. Numer. Algorithms. 87(4), 1749–1766 (2021)

    Article  MathSciNet  Google Scholar 

  22. Lin, Z., Wang, D.D.: A finite element formulation preserving symmetric and banded diffusion stiffness matrix characteristics for fractional differential equations. Comput. Mech. 62(2), 185–211 (2018)

    Article  MathSciNet  Google Scholar 

  23. Obembe, A.D., Hossain, M.E., Abu-Khamsin, S.A.: Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Petrol. Sci. Eng. 152, 391–405 (2017)

    Article  Google Scholar 

  24. Carcione, J.M., Sanchez-Sesma, F.J., Luzn, F., Gaviln, J.J.P.: Theory and simulation of time-fractional fluid diffusion in porous media. J. Phys. A Math. Theor. 46(34), 345501 (2013)

    Article  MathSciNet  Google Scholar 

  25. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  26. Gelhard, T., Lube, G., Olshanskii, M.A., Starcke, J.H.: Stabilized finite element schemes with LBB-stable elements for incompressible flows. J. Comput. Appl. Math. 177(2), 243–267 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was funded by Shenzhen Science and Technology Program of China under Grant RCBS202007414114939091, Guangdong Basic and Applied Basic Research Foundation of China under Grants 2022A1515110152 and 2023A1515010854.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Junchao Wu implemented the numerical simulation and Dr. Zeng Lin wrote the whole manuscript text.

Corresponding author

Correspondence to Zeng Lin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Lin, Z. A Mixed Finite Element Method for Solving the Time-Fractional-Darcy Equation. Int. J. Appl. Comput. Math 10, 66 (2024). https://doi.org/10.1007/s40819-024-01692-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-024-01692-x

Keywords

Navigation