Skip to main content
Log in

Hall and Ion Slip Effects on Rotating Casson Nanofluid Flow Past a Deformable Sheet with Multiple Slips and Activation Energy: Modern Impressions of Non-linear Radiation and Convection

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The primary aim of the present investigation is to explore the impressions of Hall current and ion slip effects on heat and mass transport phenomena in a rotating and 3-dimensional steady flow of incompressible Casson nanofluid over an exponentially elongating sheet with multiple slip conditions at the surface boundary. Furthermore, quadratically varying heat and mass convections, internal heat source, viscous–Ohmic dissipation, nonlinear thermal radiation and activation energy with binary chemical reaction are also taken into consideration. Such a flow problem has several scientific and engineering applications in polymer processing, bio-sensors, geothermal engineering, thermal energy storage systems, conductive coatings, food processing, space vehicles, high temperature and cooling processes, combustion chambers, etc. Appropriate similarity transformations are introduced to non-dimensionalize the governing model equations and boundary conditions. The converted boundary value problem is then solved numerically using a shooting technique based on Runge–Kutta Cash–Karp method. The velocity, temperature and concentration profiles are drawn to visualize the impacts of several worthy parameters on momentum, thermal and mass distributions. The variations in surface drag force, rates of heat and mass transport at the bounding surface are also illustrated and presented in graphical form. Moreover, a comparative study of numerical data is performed to validate the correctness of the obtained results. The results show that the Hall current and ion slip accelerate the flow momentum. The temperature profile is escalated with respect to the thermal radiation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Abbreviations

\({\tilde{U}},{\tilde{V}},{\tilde{W}}\) :

Velocity components

\({\tilde{X}},{\tilde{Y}},{\tilde{Z}}\) :

Space coordinates

\(K_2\) :

Chemical reaction coefficient

\(E_a\) :

Activation energy

\(c_p\) :

Specific heat at constant pressure

Kr :

Chemical reaction parameter

\(U_{\text {wall}}\),\(V_{\text {wall}}\) :

Stretching velocities

\(k_1\) :

Thermal conductivity

\(Q_1\) :

Heat generation coefficient

\(D_B\) :

Mass diffusivity

Rd :

Thermal radiation parameter

Pr :

Prandtl number

\(\text {g}\) :

Gravitational acceleration

\(E_1\) :

Activation energy parameter

\({\tilde{T}},{\tilde{C}}\) :

Temperature and concentration respectively

Nt :

Thermophoresis parameter

\(Re_{{\tilde{X}}}, Re_{{\tilde{Y}}}\) :

Local Reynolds numbers

Q :

Heat generation parameter

Nb :

Brownian motion parameter

\(N_3,N_4\) :

Velocity slip coefficients

\(d_3,d_4\) :

Thermal and solutal jump coefficients respectively

H :

Magnetic parameter

\(k^*\) :

Boltzmann constant

\({\tilde{T}}_0, {\tilde{C}}_0\) :

Constant temperature and concentration

\({\tilde{U}}_0, {\tilde{V}}_0\) :

Reference velocities

n :

Temperature exponent parameter

K :

Rotation parameter

\(N^*\) :

Ratio of concentration to thermal buoyancy forces

Ec :

Eckert number

A :

Velocity ratio parameter

Sc :

Schmidt number

\(Gr_{{\tilde{x}}}\) :

Thermal Grashof number

\(Gc_{{\tilde{x}}}\) :

Solutal Grashof number

\(D_{{\tilde{T}}}\) :

Coefficient of thermal diffusion

\(k^*\) :

Mean absorption coefficient

\(\sigma ^*\) :

Stefan–Boltzmann constant

\(\beta \) :

Cassonparameter

\(\Theta \) :

Dimensionless temperature

\(\nu \) :

Kinematic viscosity

\(\Phi \) :

Dimensionless concentration

\(\eta \) :

Similarity variable

\(\mu \) :

Dynamic viscosity

\(\delta _1,\delta _2\) :

Velocity slip parameters

\(\Lambda _1,\Lambda _2\) :

Quadratic convection parameters for temperature and concentration

\(\delta _3, \delta _4\) :

Dimensionless temperature and concentration jump parameters

\(\sigma \) :

Electrical conductivity

\(\Theta _r\) :

Temperature ratio parameter

\(\lambda _1\) :

Mixed convection parameter

\(\left( \rho c_p\right) _f\) :

Heat capacity of base fluid

\(\beta _1, \beta _2\) :

Linear and non-linear concentration expansion coefficients

\(\alpha _1, \alpha _2\) :

Linear and non-linear thermal expansion coefficients

\(\beta _e\) :

Hall current parameter

\(\rho _f\) :

Density of the base fluid

\(\alpha _e\) :

Ion slip parameter

References

  1. Dinarvand, S., Khalili, S., Hosseini, R., Damangir, E., Roohidehkordi, I., Pop, I.: MHD flow and heat transfer over a nonlinearly stretching sheet in porous medium filled with a nanofluid. Spec. Top. Rev. Porous Media 5(1), 13–25 (2014)

    Google Scholar 

  2. Rashidi, M.M., Ali, M., Rostami, B., Rostami, P., Xie, G.: Heat and mass transfer for MHD viscoelastic fluid flow over a vertical stretching sheet with considering Soret and Dufour effects. Math. Probl. Eng. 2015, 861065 (2015)

    MathSciNet  Google Scholar 

  3. Singh, J., Mahabaleshwar, U.S., Bognr, G.: Mass transpiration in nonlinear MHD flow due to porous stretching sheet. Sci. Rep. 9, 18484 (2019)

    Google Scholar 

  4. Alarifi, I.M., Abokhalil, A.G., Osman, M., Lund, L.A., Ayed, M.B., Belmabrouk, H., Tlili, I.: MHD flow and heat transfer over vertical stretching sheet with heat sink or source effect. Symmetry 11(3), 297 (2019)

    Google Scholar 

  5. Haldar, S., Mukhopadhyay, S., Layek, G.C.: Flow and heat transfer of Casson fluid over an exponentially shrinking permeable sheet in presence of exponentially moving free stream with convective boundary condition. Mech. Adv. Mater. Struct. 26(17), 1498–1504 (2019)

    Google Scholar 

  6. Mabood, F., Das, K.: Outlining the impact of melting on MHD Casson fluid flow past a stretching sheet in a porous medium with radiation. Heliyon 5(2), e01216 (2019)

    Google Scholar 

  7. Hamid, M., Usman, M., Khan, Z.H., Ahmad, R., Wang, W.: Dual solutions and stability analysis of flow and heat transfer of Casson fluid over a stretching sheet. Phys. Lett. A 383, 2400–2408 (2019)

    MathSciNet  Google Scholar 

  8. Krishna, M.V., Ahamad, N.A., Chamkha, A.J.: Numerical investigation on unsteady MHD convective rotating flow past an infinite vertical moving porous surface. Ain Shams Eng. J. 12(2), 2099–2109 (2021)

    Google Scholar 

  9. Laxmi, T.V., Shankar, B.: Effect of nonlinear thermal radiation on boundary layer flow of viscous fluid over nonlinear stretching sheet with injection/suction. J. Appl. Math. Phys. 4, 307–319 (2016)

    Google Scholar 

  10. Makinde, O.D., Kumar, K.G., Manjunatha, S., Gireesha, B.J.: Effect of nonlinear thermal radiation on MHD boundary layer flow and melting heat transfer of micro-polar fluid over a stretching surface with fluid particles suspension. Defect Diffus. Forum 378, 125–136 (2017)

    Google Scholar 

  11. Mohammadein, S.A., Raslan, K., Abdel-Wahed, M.S., Abedel-Aal, E.M.: KKL-model of MHD CuO-nanofluid flow over a stagnation point stretching sheet with nonlinear thermal radiation and suction/injection. Results Phys. 10, 194–199 (2018)

    Google Scholar 

  12. Acharya, N., Bag, R., Kundu, P.K.: On the impact of nonlinear thermal radiation on magnetized hybrid condensed nanofluid flow over a permeable texture. Appl. Nanosci. 10, 1679–1691 (2019)

    Google Scholar 

  13. Gireesha, B.J., Umeshaiah, M., Prasannakumara, B.C., Shashikumar, N.S., Archana, M.: Impact of nonlinear thermal radiation on magnetohydrodynamic three dimensional boundary layer flow of Jeffrey nanofluid over a nonlinearly permeable stretching sheet. Phys. A 549, 124051 (2019)

    MathSciNet  Google Scholar 

  14. Hussain, T., Shehzad, S.A., Alsaedi, A., Hayat, T., Ramzan, P.D.M.: Flow of Casson nanofluid with viscous dissipation and convective conditions: a mathematical model. J.Central S. Univ. 22(3), 1132–1140 (2015)

    Google Scholar 

  15. Besthapu, P., Haq, R.U., Bandari, S., Al-Mdallal, Q.M.: Mixed convection flow of thermally stratified MHD nanofluid over an exponentially stretching surface with viscous dissipation effect. J. Taiwan Inst. Chem. Eng. 71, 307–314 (2017)

    Google Scholar 

  16. Mahanthesh, B., Gireesha, B.J., Gorla, R.S.R.: Unsteady threedimensional MHD flow of a nano Eyring–Powell fluid past a convectively heated stretching sheet in the presence of thermal radiation, viscous dissipation and Joule heating. J. Assoc. Arab Univ. Basic Appl. Sci. 23, 75–84 (2017)

    Google Scholar 

  17. Khader, M.M.: Fourth-order predictor-corrector FDM for the effect of viscous dissipation and Joule heating on the Newtonian fluid flow. Comput. Fluids 182, 9–14 (2019)

    MathSciNet  Google Scholar 

  18. Seth, G.S., Sharma, R., Kumbhakar, B., Tripathi, R.: MHD stagnation point flow over exponentially stretching sheet with exponentially moving free-stream, viscous dissipation, thermal radiation and non-uniform heat source/sink. Diffus. Found. 11, 182–190 (2017)

    Google Scholar 

  19. Ramandevi, B., Reddy, J.V.R., Sugunamma, V., Sandeep, N.: Combined influence of viscous dissipation and nonuniform heat source/sink on MHD non-Newtonian fluid flow with Cattaneo–Christov heat flux. Alex. Eng. J. 57, 1009–1018 (2018)

    Google Scholar 

  20. Afridi, M.I., Qasim, M.: Second law analysis of Blasius flow with nonlinear Rosseland thermal radiation in the presence of viscous dissipation. Propuls. power Res. 8(3), 234–242 (2019)

    Google Scholar 

  21. Patel, H.R., Singh, R.: Thermophoresis, Brownian motion and non-linear thermal radiation effects on mixed convection MHD micropolar fluid flow due to nonlinear stretched sheet in porous medium with viscous dissipation, joule heating and convective boundary condition. Int. Commun. Heat Mass Transf. 107, 68–92 (2019)

    Google Scholar 

  22. Chaudhary, S., Kanika, K.M.: Impacts of viscous dissipation and Joule heating on hydromagnetic boundary layer flow of nanofluids over a flat surface subjected to Newtonian heating. SN Appl. Sci. 1, 1709 (2019)

    Google Scholar 

  23. Krishna, M.V., Swarnalathamma, B.V., Chamkha, A.J.: Investigations of Soret, Joule and Hall effects on MHD rotating mixed convective flow past an infinite vertical porous plate. J. Ocean Eng. Sci. 4(3), 263–275 (2019)

    Google Scholar 

  24. Das, M., Kumbhakar, B., Singh, J.: Analysis of unsteady MHD Williamson nanofluid flow past a stretching sheet with nonlinear mixed convection, thermal radiation and velocity slips. J. Comput. Anal. Appl. 30(1), 176–195 (2022)

    Google Scholar 

  25. Senapati, M., Swain, K., Parida, S.K.: Numerical analysis of threedimensional MHD flow of Casson nanofluid past an exponentially stretching sheet. Karbala Int. J. Modern Sci. 6(1), 93–102 (2020)

    Google Scholar 

  26. Gopal, D., Kishan, N., Raju, C.S.K.: Viscous and Joule’s dissipation on Casson fluid over a chemically reacting stretching sheet with inclined magnetic field and multiple slips. Inf. Med. Unlocked 9, 154–160 (2017)

    Google Scholar 

  27. Rao, M.E., Sreenadh, S.: MHD flow of a Casson fluid over an exponentially inclined permeable stretching surface with thermal radiation, viscous dissipation and chemical reaction. Global J. Pure Appl. Math. 13(10), 7529–7548 (2017)

    Google Scholar 

  28. Raza, J., Farooq, M., Mebarek-Oudina, F., Mahanthesh, B.: Multiple slip effects on MHD non-Newtonian nanofluid flow over a nonlinear permeable elongated sheet: numerical and statistical analysis. Multidiscip. Model. Mater. Struct. 15(5), 913–931 (2019)

    Google Scholar 

  29. Srinivasacharya, D., Jagadeeshwar, P.: Effect of Joule heating on the flow over an exponentially stretching sheet with convective thermal condition. Math. Sci. 13, 201–211 (2019)

    MathSciNet  Google Scholar 

  30. Ameen, I., Shah, Z., Islam, S., Nasir, S., Khan, W., Kumam, P., Thounthong, P.: Hall and ion-slip effect on CNTS nanofluid over a porous extending surface through heat generation and absorption. Entropy 21(8), 801 (2019)

    Google Scholar 

  31. Krishna, M.V., Chamkha, A.J.: Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results Phys. 15, 102652 (2019)

    Google Scholar 

  32. Ibrahim, W., Anbessa, T.: Mixed convection flow of a Maxwell nanofluid with Hall and ionslip impacts employing the spectral relaxation method. Heat Transf. 49(5), 3094–3118 (2020)

    Google Scholar 

  33. Krishna, M.V.: Hall and ion slip impacts on unsteady MHD free convective rotating flow of Jeffreys fluid with ramped wall temperature. Int. Commun. Heat Mass Transf. 119, 104927 (2020)

    Google Scholar 

  34. Krishna, M.V., Chamkha, A.J.: Hall and ion slip effects on magnetohydrodynamic convective rotating flow of Jeffreys fluid over an impulsively moving vertical plate embedded in a saturated porous medium with Ramped wall temperature. Numer. Methods Partial Differ. Equ. 37(3), 2150–2177 (2021)

    MathSciNet  Google Scholar 

  35. Krishna, M.V., Anand, P.V.S., Chamkha, A.J.: Heat and mass transfer on free convective flow of amicropolar fluid through a porous surface with inclined magnetic field and Hall effects. Spec. Top. Rev. Porous Media Int. J. 10(3), 203–223 (2019)

    Google Scholar 

  36. Krishna, M.V., Ahamad, N.A., Chamkha, A.J.: Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate. Alex. Eng. J. 59(2), 565–577 (2020)

    Google Scholar 

  37. Krishna, M.V.: Hall and ion slip effects on radiative MHD rotating flow of Jeffreys fluid past an infinite vertical flat porous surface with ramped wall velocity and temperature. Int. Commun. Heat Mass Transf. 126, 105399 (2021)

    Google Scholar 

  38. Majeed, A., Noori, F.M., Zeeshan, A., Mahmood, T., Rehman, S.U., Khan, I.: Analysis of activation energy in magnetohydrodynamic flow with chemical reaction and second order momentum slip model. Case Stud. Thermal Eng. 12, 765–773 (2018)

    Google Scholar 

  39. Reddy, S.R.R., Reddy, P.B.A., Bhattacharyya, K.: Effect of nonlinear thermal radiation on 3D magneto slip flow of Eyring–Powell nanofluid flow over a slendering sheet with binary chemical reaction and Arrhenius activation energy. Adv. Powder Technol. 30, 3203–3213 (2019)

    Google Scholar 

  40. Salahuddin, T., Arshad, M., Siddique, N., Alqahtani, A.S., Malik, M.Y.: Thermophysical properties and internal energy change in Casson fluid flow along with activation energy. Ain Shams Eng. J. 11(4), 1355–1365 (2020)

    Google Scholar 

  41. Khan, M.I., Nasir, T., Hayat, T., Khan, N.B., Alsaedi, A.: Binary chemical reaction with activation energy in rotating flow subject to nonlinear heat flux and heat source/sink. J. Comput. Des. Eng. 7(3), 279–286 (2020)

    Google Scholar 

  42. Krishna, M.V., Chamkha, A.J.: Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium. Int. Commun. Heat Mass Transf. 113, 104494 (2020)

    Google Scholar 

  43. Rao, M.V.S., Gangadhar, K., Varma, P.L.N.: A spectral relaxation method for three-dimensional MHD flow of nanofluid flow over an exponentially stretching sheet due to convective heating: an application to solar energy. Indian J. Phys. 92(12), 1577–1588 (2018)

    Google Scholar 

  44. Gangaiah, T., Saidulu, N., Lakshmi, A.V.: The influence of thermal radiation on mixed convection MHD flow of a Casson nanofluid over an exponentially stretching sheet. Int. J. Nanosci. Nanotechnol. 15(2), 83–98 (2019)

    Google Scholar 

  45. Hashim Hamid, A., Khan, M.: Multiple solutions for MHD transient flow of Williamson nanofluids with convective heat transport. J. Taiwan Inst. Chem. Eng. 103, 126–137 (2019)

    Google Scholar 

  46. Nandi, S., Kumbhakar, B.: Navier’s slip effect on Carreau nanofluid flow past a convectively heated wedge in the presence of nonlinear thermal radiation and magnetic field. Int. Commun. Heat Mass Transfer 118, 104813 (2020)

    Google Scholar 

Download references

Acknowledgements

The first author is grateful to the University of Petroleum and Energy Studies, and the second author is grateful to the National Institute of Technology Meghalaya for providing all kinds of research facilities needed to complete this work.

Funding

No fund has been received for the current investigation.

Author information

Authors and Affiliations

Authors

Contributions

SN Methodology, software, writing- original draft preparation, data curation and validation BK: Conceptualization, supervision, formal analysis, visualization, investigation GSS: Conceptualization, supervision, data curation.

Corresponding author

Correspondence to Bidyasagar Kumbhakar.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest regarding this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, S., Kumbhakar, B. & Seth, G.S. Hall and Ion Slip Effects on Rotating Casson Nanofluid Flow Past a Deformable Sheet with Multiple Slips and Activation Energy: Modern Impressions of Non-linear Radiation and Convection. Int. J. Appl. Comput. Math 10, 65 (2024). https://doi.org/10.1007/s40819-024-01691-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-024-01691-y

Keywords

Mathematics Subject Classification

Navigation