Skip to main content
Log in

Numerical Study on Hydromagnetic Oscillating Flow of Couple Stress Nanofluid in a Porous Channel with Cattaneo Christov Heat Flux

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The present work discloses the oscillating hydromagnetic blood-based couple stress nanofluid flow in between porous walls by the means of Buongiorno nanofluid model with Cattaneo–Christov heat flux. Joule heating, chemical reaction, viscous dissipation, and thermal radiation are accounted in this study. The flow governing equations are simplified by adopting the perturbation method and then solved by using the Runge–Kutta fourth-order approach with aid of a shooting procedure. The obtained results show that the temperature increases with the augmenting viscous dissipation, thermophoresis, thermal radiation, and Brownian motion, whereas the rising couple stress viscosity dwindling the temperature. Heat transfer rate is enhanced with the increment in thermophoresis and Brownian motion parameters whereas the reverse is true with the rise in couple stress and thermal relaxation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availibility

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

\(x^{*},y^{*}\) :

Dimensional Cartesian coordinates

xy :

Dimensionless Cartesian coordinates

\(u^{*} \) :

Dimensional velocity components in x-direction (m s\(^{-1}\))

u :

Dimensionless velocity component in x-direction

\(P^{*}\) :

Dimensional pressure (Kg m\(^{-1}\) S\(^{-1}\))

P :

Dimensionless pressure

\(t^{*}\) :

Dimensional time (s)

t :

Dimensionless time

\(\mu \) :

Dynamic viscosity

\(\sigma ^{*}\) :

Stefan–Boltzmann constant (W m\(^{-2}\) K\(^{-4}\))

\(\sigma \) :

Electrical conductivity \((\Omega \hbox {m})^{-1}\)

\(k^{*}\) :

Roseland mean absorption (m\(^{-1}\))

\(B_{0}\) :

Magnetic field

\(q_{r}^*\) :

Radioactive heat flux (W m\(^{-2}\))

\(T_{1},T_{0}\) :

Temperatures at top and bottom walls

\( T_m \) :

Mean temperature

\( D_T, D_B \) :

Diffusive coefficients of thermophoresis and Brownian motion

\( k_1 \) :

First order chemical reaction rate

\( \gamma \) :

Chemical reaction parameter

\(\rho \) :

Density (Kg m\(^{-3}\))

\(C_p\) :

Specific heat (J Kg\(^{-1}\) K\(^{-1}\))

\(\rho C_P\) :

Effective specific heat capacity

K :

Thermal conductivity (W m\(^{-1}\) K\(^{-1}\))

\(\eta \) :

Coefficient of couple stress viscosity

\( \lambda \) :

Couple stress parameter

\( \lambda _{0}\) :

Relaxation time for heat flux

\( \lambda _1 \) :

Thermal relaxation parameter

A :

Known constant

\(\epsilon (<<1)\) :

Positive quantity

\(T^{*}\) :

Temperature of the nanofluid (K)

h :

Distance between the walls (m)

\(\omega \) :

Frequency

H :

Frequency parameter

R :

Cross-flow Reynolds number

H :

Hartmann number

Pr :

Prandtl number

Nt :

Thermophoresis parameter

Nb :

Brownian motion parameter

Le :

Lewis number

Ec :

Eckert number

Rd :

Radiation parameter

References

  1. Choi, S.U.S.: Nanofluids: from vision to reality through research. J. Heat Transf. 131, 033106 (2016)

    Google Scholar 

  2. Vijayalakshmi, A., Srinivas, S.: A study on hydromagnetic pulsating flow of a nanofluid in a porous channel with thermal radiation. J. Mech. 33, 213–224 (2017)

    Google Scholar 

  3. Said, Z., Sundar, L.S., Tiwari, A.K., Ali, H.M., Sheikholeslami, M., Bellos, E., Babar, H.: Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Phys. Rep. 946, 1–94 (2022)

    Google Scholar 

  4. Gul, H., Ramzan, M., Chung, J.D., Chu, Y.M., Kadry, S.: Multiple slips impact in the MHD hybrid nanofluid flow with Cattaneo–Christov heat flux and autocatalytic chemical reaction. Sci. Rep. 11, 1–14 (2021)

    Google Scholar 

  5. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Google Scholar 

  6. Hatami, M., Hatami, J., Ganji, D.D.: Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel. Comput. Methods Programs Biomed. 113, 632–641 (2014)

    Google Scholar 

  7. Srinivas, S., Vijayalakshmi, A., Ramamohan, T.R., Subramanyam Reddy, A.: Hydromagnetic flow of a nanofluid in a porous channel with expanding or contracting walls. J. Porous Media. 17, 953–967 (2014)

    Google Scholar 

  8. Ramzan, M., Gul, H., Kadry, S., Chu, Y.M.: Role of bioconvection in a three dimensional tangent hyperbolic partially ionized magnetized nanofluid flow with Cattaneo-Christov heat flux and activation energy. Int. Commun. Heat Mass Transf. 120, 104994 (2021)

    Google Scholar 

  9. Khan, M., Sarfraz, M., Ahmed, J., Ahmad, L., Ahmed, A.: Viscoelastic nanofluid motion for Homann stagnation-region with thermal radiation characteristics. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 235, 5324–5336 (2021)

    Google Scholar 

  10. Puneeth, V., Anandika, R., Manjunatha, S., Khan, M.I., Imran Khan, M., Althobaiti, A., Galal, A.M.: Implementation of modified Buongiorno’s model for the investigation of chemically reacting GO-Fe3O4-TiO2-H2O ternary nanofluid jet flow in the presence of bio-active mixers. Chem. Phys. Lett. 786, 139194 (2022)

    Google Scholar 

  11. Devakar, M., Iyengar, T.K.V.: Run up flow of a couple stress fluid between parallel plates. Nonlinear Anal. Model. Control. 15, 29–37 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Govindarajulu, K., Reddy, A.S.: Magnetohydrodynamic pulsatile flow of third grade hybrid nanofluid in a porous channel with Ohmic heating and thermal radiation effects. Phys. Fluids 34, 013105 (2022)

    Google Scholar 

  13. Stokes, V.K.: Effects of couple stresses in fluids on hydromagnetic channel flows. Phys. Fluids 11, 1131–1132 (1968)

    Google Scholar 

  14. Jawad, M., Khan, A., Shah, S.A.A.: Examination of couple stress hybrid nanoparticles (CuO-Cu/blood) as a targeted drug carrier with magnetic effects through porous sheet. Braz. J. Phys. 51, 1096–1107 (2021)

    Google Scholar 

  15. Hayat, T., Muhammad, T., Alsaedi, A.: On three-dimensional flow of couple stress fluid with Cattaneo–Christov heat flux. Chin. J. Phys. 55, 930–938 (2017)

    Google Scholar 

  16. Rajamani, S., Reddy, A.S.: Effects of Joule heating, thermal radiation on MHD pulsating flow of a couple stress hybrid nanofluid in a permeable channel. Nonlinear Anal. Model. Control. 27, 1–16 (2022)

    MathSciNet  MATH  Google Scholar 

  17. Xiong, P.Y., Nazeer, M., Hussain, F., Khan, M.I., Saleem, A., Qayyum, S., Chu, Y.M.: Two-phase flow of couple stress fluid thermally effected slip boundary conditions: numerical analysis with variable liquids properties. Alex. Eng. J. 61, 3821–3830 (2022)

    Google Scholar 

  18. Malathy, T., Srinivas, S.: Pulsating flow of a hydromagnetic fluid between permeable beds. Int. Commun. Heat Mass Transf. 35, 681–688 (2008)

    Google Scholar 

  19. Srinivas, S., Vijayalakshmi, A., Reddy, A.S., Ramamohan, T.R.: MHD flow of a nanofluid in an expanding or contracting porous pipe with chemical reaction and heat source/sink. Propuls. Power Res. 5, 134–148 (2016)

    Google Scholar 

  20. Wang, C.Y.: Pulsatile flow in a porous channel. J. Appl. Mech. Trans. ASME 38, 553–555 (1971)

    Google Scholar 

  21. Datta, N., Dalal, D.C., Mishra, S.K.: Unsteady heat transfer to pulsatile flow of a dusty viscous incompressible fluid in a channel. Int. J. Heat Mass Transf. 36, 1783–1788 (1993)

    MATH  Google Scholar 

  22. Radhakrishnamacharya, G., Maiti, M.K.: Heat transfer to pulsatile flow in a porous channel. Int. J. Heat Mass Transf. 20, 171–173 (1977)

    MATH  Google Scholar 

  23. Malathy, T., Srinivas, S., Reddy, A.S.: Chemical reaction and radiation effects on MHD pulsatile flow of an Oldroyd-B fluid in a porous medium with slip and convective boundary conditions. J. Porous Media. 20, 287–301 (2017)

    Google Scholar 

  24. Shawky, H.M.: Pulsatile flow with heat transfer of dusty magnetohydrodynamic Ree-Eyring fluid through a channel. Heat Mass Transf. 45, 1261–1269 (2009)

    Google Scholar 

  25. Ahmed, S., Xu, H.: Forced convection with unsteady pulsating flow of a hybrid nanofluid in a microchannel in the presence of EDL, magnetic and thermal radiation effects. Int. Commun. Heat Mass Transf. 120, 105042 (2021)

    Google Scholar 

  26. El Kot, M.A., Abd Elmaboud, Y.: Unsteady pulsatile fractional Maxwell viscoelastic blood flow with Cattaneo heat flux through a vertical stenosed artery with body acceleration. J. Therm. Anal. Calorim. 91, 1–14 (2021)

    Google Scholar 

  27. Srinivas, S., Kumar, C.K., Reddy, A.S.: Pulsating flow of Casson fluid in a porous channel with thermal radiation, chemical reaction and applied magnetic field. Nonlinear Anal. Model. Control. 23, 213–233 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Venkatesan, G., Reddy, A.S.: Insight into the dynamics of blood conveying alumina nanoparticles subject to Lorentz force, viscous dissipation, thermal radiation, Joule heating, and heat source. Eur. Phys. J. Spec. Top. 230, 1475–1485 (2021)

    Google Scholar 

  29. Ahmed, F., Eames, I., Moeendarbary, E., Azarbadegan, A.: High-Strouhal-number pulsatile flow in a curved pipe. J. Fluid Mech. 923, A15 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Akmal, N., Sagheer, M., Hussain, S.: Numerical study focusing on the entropy analysis of MHD squeezing flow of a nanofluid model using Cattaneo–Christov theory. AIP Adv. 8, 055201 (2018)

    Google Scholar 

  31. Tanveer, A., Hina, S., Hayat, T., Mustafa, M., Ahmad, B.: Effects of the Cattaneo–Christov heat flux model on peristalsis. Eng. Appl. Comput. Fluid Mech. 10, 373–383 (2016)

    Google Scholar 

  32. Gangadhar, K., Keziya, K., Kannan, T., Munjam, S.R.: Analytical investigation on CNT based Maxwell nano-fluid with Cattaneo–Christov heat flux due to thermal radiation. Int. J. Appl. Comput. Math. 6, 124 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Farooq, U., Waqas, H., Khan, M.I., Khan, S.U., Chu, Y.M., Kadry, S.: Thermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo–Christov expressions and exponential space-based heat source. Alex. Eng. J. 60, 3073–3086 (2021)

    Google Scholar 

  34. Chu, Y.M., Shankaralingappa, B.M., Gireesha, B.J., Alzahrani, F., Khan, M.I., Khan, S.U.: Combined impact of Cattaneo–Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface. Appl. Math. Comput. 419, 126883 (2022)

    MathSciNet  MATH  Google Scholar 

  35. Fourier, J.B.: La théorie analytique de la chaleur. Mem. Acad. R. Sci. 8, 581–622 (1829)

    MATH  Google Scholar 

  36. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  37. Christov, C.I.: On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 36, 481–486 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Chu, Y.M., Shah, F., Khan, M.I., Kadry, S., Abdelmalek, Z., Khan, W.A.: Cattaneo–Christov double diffusions (CCDD) in entropy optimized magnetized second grade nanofluid with variable thermal conductivity and mass diffusivity. J. Mater. Res. Technol. 9, 13977–13987 (2020)

    Google Scholar 

  39. Venkata Ramana, K., Gangadhar, K., Kannan, T., Chamkha, A.J.: Cattaneo–Christov heat flux theory on transverse MHD Oldroyd-B liquid over nonlinear stretched flow. J. Therm. Anal. Calorim. 147, 2749–2759 (2021)

    Google Scholar 

  40. Kumar, C.K., Srinivas, S., Subramanyam Reddy, A.: MHD pulsating flow of Casson nanofluid in a vertical porous space with thermal radiation and joule heating. J. Mech. 36, 535–549 (2020)

    Google Scholar 

  41. Siddiqa, S., Begum, N., Hossain, M.A., Abrar, M.N., Gorla, R.S.R., Al-Mdallal, Q.: Effect of thermal radiation on conjugate natural convection flow of a micropolar fluid along a vertical surface. Comput. Math. Appl. 83, 74–83 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Selvi, R.T., Ponalagusamy, R., Padma, R.: Influence of electromagnetic field and thermal radiation on pulsatile blood flow with nanoparticles in a constricted porous artery. Int. J. Appl. Comput. Math. 7, 1–25 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Abdal, S., Siddique, I., Afzal, S., Chu, Y.M., Ahmadian, A., Salahshour, S.: On development of heat transportation through bioconvection of Maxwell nanofluid flow due to an extendable sheet with radiative heat flux and prescribed surface temperature and prescribed heat flux conditions. Math. Methods Appl. Sci. 1–18 (2021)

  44. Chu, Y.M., Nazeer, M., Khan, M.I., Hussain, F., Rafi, H., Qayyum, S., Abdelmalek, Z.: Combined impacts of heat source/sink, radiative heat flux, temperature dependent thermal conductivity on forced convective Rabinowitsch fluid. Int. Commun. Heat Mass Transf. 120, 105011 (2021)

    Google Scholar 

  45. Yahya, A.U., Salamat, N., Habib, D., Ali, B., Hussain, S., Abdal, S.: Implication of Bio-convection and Cattaneo–Christov heat flux on Williamson Sutterby nanofluid transportation caused by a stretching surface with convective boundary. Chin. J. Phys. 73, 706–718 (2021)

    MathSciNet  Google Scholar 

  46. Rajamani, S., Reddy, A.S., Srinivas, S., Ramamohan, T.R.: Impacts of Brownian motion, thermophoresis and Ohmic heating on chemically reactive pulsatile MHD flow of couple stress nanofluid in a channel. Indian J. Pure Appl. Phys. 60, 354–366 (2022)

    Google Scholar 

  47. Waqas, H., Yasmin, S., Muhammad, T., Imran, M.: Flow and heat transfer of nanofluid over a permeable cylinder with nonlinear thermal radiation. J. Mater. Res. Technol. 14, 2579–2585 (2021)

    Google Scholar 

  48. Rajkumar, D., Reddy, A.S., Jagadeshkumar, K., Srinivas, S.: Numerical investigation on pulsating hydromagnetic flow of chemically reactive micropolar nanofluid in a channel with Brownian motion, thermophoresis and ohmic heating. Int. J. Appl. Comput. Math. 8, 119 (2022)

    MathSciNet  MATH  Google Scholar 

  49. Rawat, S.K., Upreti, H., Kumar, M.: Comparative study of mixed convective MHD Cu-water nanofluid flow over a cone and wedge using modified Buongiorno’s model in presence of thermal radiation and chemical reaction via Cattaneo–Christov double diffusion model. J. Appl. Comput. Mech. 7, 1383–1402 (2021)

    Google Scholar 

  50. Mishra, A., Upreti, H.: A comparative study of Ag-MgO/water and \(Fe_3O_4-CoFe_2O_4/EG\)-water hybrid nanofluid flow over a curved surface with chemical reaction using Buongiorno model. Partial Differ. Equ. Appl. Math. 5, 100322 (2022)

    Google Scholar 

Download references

Funding

This research has received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Subramanyam Reddy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajamani, S., Subramanyam Reddy, A. & Gorla, R.S.R. Numerical Study on Hydromagnetic Oscillating Flow of Couple Stress Nanofluid in a Porous Channel with Cattaneo Christov Heat Flux. Int. J. Appl. Comput. Math 9, 55 (2023). https://doi.org/10.1007/s40819-023-01532-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01532-4

Keywords

Navigation