Skip to main content
Log in

Bernstein Collocation Method for Solving High-Order Singular Differential–Difference Equations

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The purpose of this article is to present an efficient numerical approach based on Bernstein polynomials for solving high-order linear singular differential–difference equations, linear Lane–Emden type differential equations. Apart from these equations, high-order nonlinear singular Emden–Fowler type equations of tricky nature have been considered to study the nature of the approximate solutions using proposed method. The unknown Bernstein coefficients in approximate solution are obtained using collocation points. The results of numerical experiments on some test problems confirm the accuracy and efficiency of our approach. The proposed method can easily be performed computationally in less time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. Dover Publications, New York (1967)

    MATH  Google Scholar 

  2. Bellman, R., Cooke, K.L.: Differential–Difference Equations. Academic Press, New York (1963)

    Book  MATH  Google Scholar 

  3. Yüzbaşı, Ş: A numerical approach for solving the high-order linear singular differential–difference equations. Comput. Math. Appl. 62, 2289–2303 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Adibi, H., Rismani, A.M.: On using a modified Legendre-spectral method for solving singular IVPs of Lane–Emden type. Comput. Math. Appl. 60, 2126–2130 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Yildirim, A., Öziş, T.: Solutions of singular IVPs of Lane-Emden type by homotopy perturbation method. Phys. Lett. A 369, 70–76 (2007)

  6. Parand, K., Dehghan, Mehdi, Rezaei, A.R., Ghaderi, S.M.: An approximation algorithm for the solution of the nonlinear Lane–Emden type equations arising in astrophysics using Hermite functions collocation method. Comput. Phys. Commun. 181, 1096–1108 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Iqbal, S., Javed, A.: Application of optimal homotopy asymptotic method for the analytic solution of singuar Lane–Emden type equation. Appl. Math. Comput. 217(19), 7753–7761 (2011)

    MATH  MathSciNet  Google Scholar 

  8. Aminikhah, H.: Solutions of the singular IVPs of Lane–Emden type equations by combining Laplace transformation and perturbation technique. Nonlinear Eng. 7(4), 273–278 (2018)

    Article  MathSciNet  Google Scholar 

  9. Yildirim, A., Öziş, T.: Solutions of singular IVPs of Lane–Emden type by the variational iteration method. Nonlinear Anal. 70, 2480–2484 (2009)

  10. Wazwaz, A.M.: Solving two Emden–Fowler type equations of third order by the variational iteration method. Appl. Math. 9(5), 2429–2436 (2015)

    MathSciNet  Google Scholar 

  11. Wazwaz, A.M., Rach, R., Duan, J.-S.: Solving new fourth-order Emden–Fowler type equations by the Adomian decomposition method. Int. J. Comput. Methods Eng. Sci. Mech. 16(2), 121–131 (2015)

    Article  MathSciNet  Google Scholar 

  12. Gulsu, M., Sezer, M.: A Taylor polynomial approach for solving differential–difference equations. J. Comput. Appl. Math. 186, 349–364 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sezer, M., Akyüz-Daşıcoğlu, A.: Taylor polynomial solutions of general linear differential–difference equations with variable coefficients. Appl. Math. Comput. 174(2), 1526–1538 (2006)

    MATH  MathSciNet  Google Scholar 

  14. Yüzbaşı, Ş, Şahin, N., Sezer, M.: A Bessel polynomial approach for solving linear neutral delay differential equations with variable coefficients. J. Adv. Res. Differ. Equ. 3(1), 81–101 (2011)

    MathSciNet  Google Scholar 

  15. Yüzbaşı, Ş, Şahin, N., Sezer, M.: Bessel matrix method for solving high-order linear Fredholm integro-differential equations. J. Adv. Res. Appl. Math. 3(2), 23–47 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Balci, M.A., Sezer, M.: Hybrid Euler–Taylor matrix method for solving of generalized linear Fredhlom integro-differential–difference equations. Appl. Math. Comput. 273, 33–41 (2016)

    MATH  MathSciNet  Google Scholar 

  17. Adıyaman, M.E., Oger, V.: A residual method using Bézier curves for singular nonlinear equations of Lane–Emden type. Kuwait J. Sci. 44(4), 9–18 (2017)

    MATH  MathSciNet  Google Scholar 

  18. Dezhbord, A., Lotfi, T., Mahdiani, K.: A numerical approach for solving the high-order nonlinear singular Emden–Fowler type equations. Adv. Differ. Equ. 2018, 161 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ganji, R.M., Jafari, H., Adem, A.R.: A numerical scheme to solve variable order diffusion-wave equations. Therm. Sci. 23(6), S2063–S2071 (2019)

    Google Scholar 

  20. Zhang, A., Ganji, R.M., Jafari, H., Ncube, M.N., Agamalieva, L.: Numerical solution of distributed order integro-differential equations. Fractals 30(5), 2240123 (2022)

    Article  MATH  Google Scholar 

  21. Khan, H., Abdeljawad, T., Gómez-Aguilar, J.F., Tajadodi, H., Khan, A.: Fractional order Volterra integro-differential equation with Mittag–Leffler kernel. Fractals 29(6), 2150154 (2021)

    Article  MATH  Google Scholar 

  22. Tajadodi, H.: A numerical approach of fractional advection–diffusion equation with Atangana–Baleanu derivative. Chaos Solit. Fractals 130, 109527 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jafari, H., Tajadodi, H.: Electro-spunorganic nanofibres elaboration process investigations using BPs operational matrices. Iran. J. Math. Chem. 7(1), 19–27 (2016)

    MATH  Google Scholar 

  24. Tajadodi, H., Kadkhoda, N., Jafari, H.: Mustafa Inc.: Approximate technique for solving fractional variational problems. Pramana-J. Phys. 94, 146 (2020)

    Article  Google Scholar 

  25. Appalanaidu, V., Deekshitulu, G.V.S.R.: Bernstein Tau method for bessel and diffusion equations. i-Manager’s J. Math. 9(1), 28–37 (2020)

  26. Appalanaidu, V., Deekshitulu, G.V.S.R.: Bernstein collocation approach for solving nonlinear differential equations with delay and anticipation. Discontin. Nonlinear. Complex. 11(3), 425–434 (2022)

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Appalanaidu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appalanaidu, V., Deekshitulu, G.V.S.R. Bernstein Collocation Method for Solving High-Order Singular Differential–Difference Equations. Int. J. Appl. Comput. Math 9, 12 (2023). https://doi.org/10.1007/s40819-023-01492-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01492-9

Keywords

Mathematics Subject Classification

Navigation