Skip to main content
Log in

A Mingled Tau-Finite Difference Method for Stochastic First-Order Partial Differential Equations

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Herein, we offer a numerical spectral-FD solution to a one-dimensional linear first-order stochastic partial differential equation driven by multiplicative noise and analyze the results. An efficient tau algorithm is implemented to get a system of first-order ordinary differential equation and then the Euler-Maruyama method is applied followed by the Lagrangian Interpolation, consequently, we get a semi-analytic solution, we analyze the obtained distribution. The philosophy of utilization of the tau method is built on picking the Tchebyshev basis functions that suitable for discretizing the equation in the space variable. The convergence of the unknown expansion coefficients and the truncation error analysis of the suggested solution are investigated. This numerical study was essentially built on supposing that the solution to the underlying problem is separable. We end the study by exhibiting some numerical experiments to check the applicability and accuracy of the offered algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility

No data is associated with this research.

References

  1. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations, vol. 1905. Springer, Berlin (2007)

    MATH  Google Scholar 

  2. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  3. Hairer, M.: An introduction to stochastic PDEs (2009). arXiv preprint arXiv:0907.4178

  4. Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations, pp. 141–191. Springer, Berlin (1996)

    MATH  Google Scholar 

  5. Mirzaee, F., Rezaei, S., Samadyar, N.: Solution of time-fractional stochastic nonlinear sine-Gordon equation via finite difference and meshfree techniques. Math. Methods Appl. Sci. 45(7), 3426–3438 (2022)

    Article  MathSciNet  Google Scholar 

  6. Mirzaee, F., Rezaei, S., Samadyar, N.: Application of combination schemes based on radial basis functions and finite difference to solve stochastic coupled nonlinear time fractional sine-Gordon equations. Comput. Appl. Math. 41(1), 1–16 (2022)

    Article  MATH  MathSciNet  Google Scholar 

  7. Mirzaee, F., Rezaei, S., Samadyar, N.: Numerical solution of two-dimensional stochastic time-fractional sine-Gordon equation on non-rectangular domains using finite difference and meshfree methods. Eng. Anal. Bound. Elem. 127, 53–63 (2021)

    Article  MATH  MathSciNet  Google Scholar 

  8. Roth, Ch.: Difference methods for stochastic partial differential equations. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics 82(11–12), 821–830 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Soheili, A.R., Niasar, M.B., Arezoomandan, M.: Approximation of stochastic parabolic differential equations with two different finite difference schemes (2011)

  10. Bieri, M., Schwab, C.: Sparse high order fem for elliptic sPDEs. Comput. Methods Appl. Mech. Eng. 198(13–14), 1149–1170 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chernov, A.: Optimal convergence estimates for the trace of the polynomial \(l^2\)-projection operator on a simplex. Math. Comput. 81(278), 765–787 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chernov, A., Schwab, C.: First order k-th moment finite element analysis of nonlinear operator equations with stochastic data. Math. Comput. 82(284), 1859–1888 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hausenblas, E.: Finite element approximation of stochastic partial differential equations driven by Poisson random measures of jump type. SIAM J. Numer. Anal. 46(1), 437–471 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Babuska, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cao, Y., Yin, L.: Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Commun. Pure Appl. Anal. 6(3), 607 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Khoromskij, B.N., Schwab, C.: Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs. SIAM J. Sci. Comput. 33(1), 364–385 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gunzburger, M., Webster, C.G., Zhang, G.: An adaptive wavelet stochastic collocation method for irregular solutions of partial differential equations with random input data. In: Sparse Grids and Applications-Munich 2012, pp. 137–170. Springer, Berlin (2014)

    Chapter  Google Scholar 

  19. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Collier, N., Haji-Ali, A., Nobile, F., Von Schwerin, E., Tempone, R.: A continuation multilevel Monte Carlo algorithm. BIT Numer. Math. 55(2), 399–432 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  23. Teckentrup, A.L., Jantsch, P., Webster, C.G., Gunzburger, M.: A multilevel stochastic collocation method for partial differential equations with random input data. SIAM ASA J. Uncertain. Quantif. 3(1), 1046–1074 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kloeden, P.E., Platen, E.: Stochastic differential equations. In: Numerical Solution of Stochastic Differential Equations, pp. 103–160. Springer, Berlin (1992)

    Chapter  MATH  Google Scholar 

  25. Acar, R.: An advection-reaction model for flow visualization. In: 2010 IEEE Pacific Visualization Symposium (PacificVis), pp. 137–144. IEEE (2010)

  26. Ashry, Heba, Abd-Elhameed, W.M., Moatimid, G.M., Youssri, Y.H.: Spectral treatment of one and two dimensional second-order BVPs via certain modified shifted Chebyshev polynomials. Int. J. Appl. Comput. Math. 7(6), 1–21 (2021)

    Article  MATH  MathSciNet  Google Scholar 

  27. Youssri, Y.H.: Orthonormal ultraspherical operational matrix algorithm for fractal-fractional Riccati equation with generalized Caputo derivative. Fractal Fract. 5(3), 100 (2021)

    Article  Google Scholar 

  28. Youssri, Y.H.: Two Fibonacci operational matrix pseudo-spectral schemes for nonlinear fractional Klein–Gordon equation. Int. J. Mod. Phys. C 33(4), 2250049 (2022)

    Article  MathSciNet  Google Scholar 

  29. Lord, G.J., Powell, C.E., Shardlow, T.: An Introduction to Computational Stochastic PDEs, vol. 50. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  30. Ko, K.-I.: On the computational complexity of ordinary differential equations. Inf. Control 58(1–3), 157–194 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Georgios C. Georgiou (University of Cyprus - Cyprus) for his advise in the implementation of the numerical results.

Funding

No funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Youssri.

Ethics declarations

Conflict of interest

The authors declare that they have no any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssri, Y.H., Muttardi, M.M. A Mingled Tau-Finite Difference Method for Stochastic First-Order Partial Differential Equations. Int. J. Appl. Comput. Math 9, 14 (2023). https://doi.org/10.1007/s40819-023-01489-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01489-4

Keywords

Mathematics Subject Classification

Navigation