Skip to main content
Log in

Impressions of Casson \(CuO-TiO_{2}/EG\) Non-Darcian Viscous Dissipative Flow Casson Hybrid Nanofluid Non-Darcian Flow

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The movement and heat transmission of viscous dissipative Casson hybrid nanoliquid (cupric oxide CuO– titania \(TiO_{2}\)/ethylene glycol EG) flow across a flat sheet saturated with non-Darcy porous medium and forced convection were the focus of this investigation. The major partial differential equalities besides the limit conditions were condensed to dimensionless forms by using proper similarity transformation. The follow-on system of ODEs by the matching limit conditions was elucidated numerically by way of MATLAB and the bvp4c solver. The research results are investigated for simple \(TiO_{2}/EG\) and hybrid \(CuO-TiO_{2}/EG\) nanoliquids. As far as important reactions are concerned, the larger Casson parameters upsurge the velocity and decline the temperature profile. Over and above that, porosity and Eckert number are strengthened by the thermal field. However, the Nusselt number increases for the enhancement of the porous resistance parameter and decreases for the enhancement of the Eckert number and porosity parameter. Also, comparison with the available one is also rendered as a special case of our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Mutuku, W.N.: Ethylene glycol (\(EG\))-based nanofluids as a coolant for automotive radiator. Asia Pac. J. Comput. Engin. 3(1), 1–15 (2016)

    Article  Google Scholar 

  2. Kumaresan, E., Vijaya Kumar, A.G., Rushi Kumar, B.: Chemically reacting on MHD boundary layer flow of \(CuO-\)water and \(MgO-\)water nanofluids past a stretching sheet in porous media with radiation absorption and heat generation\(/\)absorption. IOP Conf. Series: Materials Sci. Eng. 263, 062017 (2017)

    Article  Google Scholar 

  3. Rana, P., Al-Kouz, W., Mahenthesh, B., Mackolil, J.: Heat transfer of \(TiO_{2}-EG\) nanoliquid with active and passive control of nanoparticles subject to nonlinear Boussinesq approximation. Int. Commun. Heat Mass Transf. 126, 105443 (2021)

    Article  Google Scholar 

  4. Shaiq, S., Maraj, E.N., Iqbal, Z.: A comparative analysis of shape factor and thermophysical properties of electrically conducting nanofluids \(TiO_{2}-EG\) and \(Cu-EG\) towards stretching cylinder. Chaos, Solitons Fractals 118, 290–299 (2019)

    Article  MathSciNet  Google Scholar 

  5. Aladdin, N.A.L., Bachok, N.: Boundary Layer Flow and Heat Transfer of \(Al_{2}O_{3}-TiO_{2}/\)Water Hybrid Nanofluid over a Permeable Moving Plate. Symmetry. 12, 1064 (2020)

    Article  Google Scholar 

  6. Sadaf, H., Abdelsalam, S.I.: Adverse effects of a hybrid nanofluid in a wavy non-uniform annulus with convective boundary conditions. RSC Adv. 10(26), 15035–15043 (2020). https://doi.org/10.1039/D0RA01134G

    Article  Google Scholar 

  7. Khashi’ie, N.S., Md Arifin, N., Nazar, R., Hafidzuddin, E.H., Wahi, N., Pop, I.: Magnetohydrodynamics (MHD) axisymmetric flow and heat transfer of a hybrid nanofluid past a radially permeable stretching/shrinking sheet with Joule heating. Chin. J. Phys. 64, 251–263 (2019)

    Article  MathSciNet  Google Scholar 

  8. Abdelsalam, S.I., Mekheimer, K.S., Zaher, A.Z.: Alterations in blood stream by electroosmotic forces of hybrid nanofluid through diseased artery: Aneurysmal/stenosed segment. Chin. J. Phys. 67, 314–329 (2020)

    Article  MathSciNet  Google Scholar 

  9. Aly, E.H., Ebaid, A.: MHD Marangoni boundary layer problem for hybrid nanofluids with thermal radiation. Int. J Numer. Method H. (2020). https://doi.org/10.1108/HFF-05-2020-0245

    Article  Google Scholar 

  10. Hayat, T., Nadeem, S., Khan, A.U.: Numerical analysis of \(Ag-CuO/\)water rotating hybrid nanofluid with heat generation and absorption. Can. J. Phys. (2018). https://doi.org/10.1139/cjp-2018-0011

    Article  Google Scholar 

  11. Eshgarf, H., Kalbasi, R., Maleki, A., Shadloo, M.S., karimipour, A.: A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09998-w

    Article  Google Scholar 

  12. Abdelsalam, S.I., Velasco-Hernández, J.X., Zaher, A.Z.: Electro-magnetically modulated self-propulsion of swimming sperms via cervical canal. Biomech. Model. Mechanobiol. 20, 861–878 (2021)

    Article  Google Scholar 

  13. Raza, R., Mabood, F., Naz, R., Abdelsalam, S.I.: Thermal transport of radiative Williamson fluid over stretchable curved surface. Therm. Sci. Eng. Prog. 23, 100887 (2021)

    Article  Google Scholar 

  14. Adewale, F.J., Lucky, A.P., Oluwabunmi, A.P., Boluwaji, E.F.: Selecting the most appropriate model for rheological characterization of synthetic based drilling mud. Int. J. Appl. Eng. Res. 12(18), 7614 (2017). (ISSN 0973-4562)

    Google Scholar 

  15. Aman, S., Zokri, S.M., Ismail, Z., Salleh, M.Z., Khan, I.: Casson model of MHD flow of SA-based hybrid nanofluid using caputo time-fractional models. Defect Diffus. Forum. 390, 83–90 (2019)

    Article  Google Scholar 

  16. Jamshed, W., Aziz, A.: Cattaneo-Christov based study of \(TiO_{2}-CuO/EG\) Casson hybrid nanofluid flow over a stretching surface with entropy generation. Appl. Nanosci. 8, 685–698 (2018)

    Article  Google Scholar 

  17. Muhammad, T., Lu, D., Mahanthesh, B., Eid, M.R., Ramzan, M., Dar, A.: Significance of Darcy-Forchheimer porous medium in nanofluid through carbon nanotubes. Commun. Theor. Phys. 70(3), 361–366 (2018)

    Article  MathSciNet  Google Scholar 

  18. Eid, M.R., Mabood, F.: Two-phase permeable non-Newtonian cross-nanomaterial flow with Arrhenius energy and entropy generation: Darcy-Forchheimer model. Phys. Scr. 95(10), 105209 (2020)

    Article  Google Scholar 

  19. Vishnu Ganesh, N., Abdul Hakeem, A.K., Ganga, B.: Darcy-Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects. Ain Shams Eng. J. 9(4), 939–951 (2018)

    Article  Google Scholar 

  20. Eldesoky, I.M., Abdelsalam, S.I., El-Askary, W.A., El-Refaey, A.M., Ahmed, M.M.: Joint Effect of Magnetic Field and Heat Transfer on Particulate Fluid Suspension in a Catheterized Wavy Tube. BioNanoScience. 9, 723–739 (2019)

    Article  Google Scholar 

  21. Rasool, G., Chamkha, A.J., Muhammad, T., Shafiq, A., Khan, I.: Darcy-Forchheimer relation in Casson type MHD nanofluid flow over non-linear stretching surface. Propuls. Power Res. 9(2), 159–168 (2020)

    Article  Google Scholar 

  22. Ferdows, M., Nabwey, H.A., Rashad, A.M., Uddin, M.J.: Alzahrani, Faris: Boundary layer flow of a nanofluid past a horizontal flat plate in a Darcy porous medium: A Lie group approach. Proc Inst Mech Eng C J Mech Eng Sci 234(8), 1545–1553 (2020)

    Article  Google Scholar 

  23. Gul, T., Rahman, J.U., Bilal, M., Saeed, A., Alghamdi, W., Mukhtar, S., Alrabaiah, H., Bonyah, E.: Viscous dissipated hybrid nanoliquid flow with Darcy-Forchheimer and forced convection over a moving thin needle. AIP Adv. 10, 105308 (2020)

    Article  Google Scholar 

  24. Eid, M.R., Makinde, O.D.: Solar radiation effect on a magneto nanofluid flow in a porous medium with chemically reactive species. Int. J. Chem. React. Eng. 16(9), 20170212 (2018)

    Google Scholar 

  25. Tlau, L., Ontela, S.: Mixed convection nanofluid flow in a non-Darcy porous medium with variable permeability: entropy generation analysis. Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01856-7

    Article  Google Scholar 

  26. Zaib, A., Haq, R.U., Sheikholeslami, M., Chamkha, A.J., Rashidi, M.M.: Impact of non-darcy medium on mixed convective flow towards a plate containing micropolar water-based \(TiO_{2}\) nanomaterial with entropy generation. J. Porous Media. 23(1), 11–26 (2020)

    Article  Google Scholar 

  27. Manh, T.D., Tlili, I., Shafee, A., Nguyen-Thoi, T., Hamouda, H.: Modeling of hybrid nanofluid behavior within a permeable media involving buoyancy effect. Phys. A 554, 123940 (2020)

    Article  MathSciNet  Google Scholar 

  28. Mabood, F., Ibrahim, S.M., Kumar, P.V., Lorenzini, G.: Effects of slip and radiation on convective MHD Casson nanofluid flow over a stretching sheet influenced by variable viscosity. J. Engin. Thermophys. 29, 303–315 (2020)

    Article  Google Scholar 

  29. Abdul Hakeem, A.K., Vishnu Ganesh, N., Ganga, B.: Heat transfer of non-Darcy MHD ow of a nano fluid over a stretching/shrinking surface in a thermally stratified medium with second order slip model. Sci. Iran. F 22(6), 2766–2784 (2015)

    Google Scholar 

  30. Anuar, N.S., Bachok, N., Arifin, N.M., Rosali, H., Pop, I.: Stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in hybrid nanofluid with slip velocity effect: stability analysis. J. Phys.: Conf. Ser. 1366, 012002 (2019)

    Google Scholar 

  31. Elmaboud, Y.A., Mekheimer, K.S., Abdelsalam, S.I.: A study of nonlinear variable viscosity in finite-length tube with peristalsis. Appl Bionics Biomech. 11, 197–206 (2014)

    Article  Google Scholar 

  32. Sreenivasulu, P., Poornima, T., Malleswari, B., Bhaskar Reddy, N., Souayeh, B.: Viscous dissipation impact on electrical resistance heating distributed Carreau nanoliquid along stretching sheet with zero mass flux. Eur. Phys. J. Plus. 135(9), 1–25 (2020)

    Article  Google Scholar 

  33. Ahmad, S., Nadeem, S.: Cattaneo-Christov-based study of \(SWCNT\)-\(MWCNT/EG\) Casson hybrid nanofluid flow past a lubricated surface with entropy generation. Appl. Nanosci. 10, 5449–5458 (2020). https://doi.org/10.1007/s13204-020-01367-1

  34. Kala, K.S.: Analysis of non-Darcy MHD flow of a Casson fluid over a non-linearly stretching sheet with partial slip in a porous medium. Asian J. Advanced Research Reports.AJARR.47539 3(3), 1–15 (2019)

    Google Scholar 

  35. Khan, U., Zaib, A., Khan, I., Baleanu, D., Nisar, K.S.: Enhanced heat transfer in moderately ionized liquid due to hybrid \(MoS_{2}/SiO_{2}\) nanofluids exposed by nonlinear radiation: stability analysis. Curr. Comput.-Aided Drug Des. 10(2), 142 (2020)

    Google Scholar 

  36. Qawasmeh, B.R., Alrbai, M., Al-Dahidi, S.: Forced convection heat transfer of Casson liquid in non-Darcy porous media. Adv. Mech. Eng. 11(1), 1–10 (2019)

    Article  Google Scholar 

  37. Chamkha, A.J., Mujtaba, M., Quadri, A., Issa, C.: Thermal radiation effects on MHD forced convection flow adjacent to a non-isothermal wedge in the presence of a heat source or sink. Heat Mass Transf. 39, 305–312 (2003)

    Article  Google Scholar 

  38. Lin, H.T., Lin, L.K.: Similarity solutions for laminar forced convection heat transfer from wedges to fluids of any Prandtl number. Int. J. Heat Mass Transf. 30, 1111–1118 (1987)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. AbdulHakeem.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indumathi, N., Ganga, B., Charles, S. et al. Impressions of Casson \(CuO-TiO_{2}/EG\) Non-Darcian Viscous Dissipative Flow Casson Hybrid Nanofluid Non-Darcian Flow. Int. J. Appl. Comput. Math 8, 239 (2022). https://doi.org/10.1007/s40819-022-01446-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01446-7

Keywords

Mathematics Subject Classification

Navigation