Skip to main content
Log in

An Efficient Method for Solving the Generalized Thomas–Fermi and Lane–Emden–Fowler Type Equations with Nonlocal Integral Type Boundary Conditions

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this work, we examine various physical phenomena modeled by nonclassical boundary value problems with nonlocal boundary conditions. We concern our analysis on a new type of nonlocal boundary value problems, i.e., the semi-numerical solution of the generalized Thomas–Fermi type equations and Lane–Emden–Fowle type equations subjected to integral type boundary conditions. We first transform the given nonlocal boundary value problems into equivalent integral equations, followed by applying a modified decomposition method, which facilitates computational work. Moreover, we show that the proposed scheme is convergent in a suitable Banach space. A sufficient theorem is supplied for the uniqueness of the solution of the problems. The proposed method approximates the solution in series with easily computable components without restrictive assumptions such as linearization, discretization, and perturbation. Several examples are included to show the accuracy, applicability, and overview of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

Enquiries about data availability should be directed to the authors.

References

  1. Chandrasekhar, S., Chandrasekar, S.: An introduction to the study of stellar structure. Ciel et Terre 55, 412 (1939)

    Google Scholar 

  2. Lin, S.: Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. J. Theor. Biol. 60(2), 449–457 (1976)

    Article  Google Scholar 

  3. McElwain, D.: A re-examination of oxygen diffusion in a spherical cell with Michaelis–Menten oxygen uptake kinetics. J. Theor. Biol. 71, 255–263 (1978)

    Article  Google Scholar 

  4. Gray, B.: The distribution of heat sources in the human head-theoretical considerations. J. Theor. Biol. 82(3), 473–476 (1980)

    Article  Google Scholar 

  5. Duggan, R., Goodman, A.: Pointwise bounds for a nonlinear heat conduction model of the human head. Bull. Math. Biol. 48(2), 229–236 (1986)

    Article  Google Scholar 

  6. Ma, R.: A survey on nonlocal boundary value problems. Appl. Math. E-Notes 7, 257–279 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Singh, R., Kumar, J., Nelakanti, G.: Numerical solution of singular boundary value problems using Green’s function and improved decomposition method. J. Appl. Math. Comput. 43(1–2), 409–425 (2013)

    Article  MathSciNet  Google Scholar 

  8. Singh, R., Kumar, J.: An efficient numerical technique for the solution of nonlinear singular boundary value problems. Comput. Phys. Commun. 185(4), 1282–1289 (2014)

    Article  MathSciNet  Google Scholar 

  9. Bobisud, L.: Existence of solutions for nonlinear singular boundary value problems. Appl. Anal. 35(1–4), 43–57 (1990)

    Article  MathSciNet  Google Scholar 

  10. Thomas, L.: The calculation of atomic fields. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 23, pp. 542–548. Cambridge University Press (1927)

  11. Fermi, E.: Un metodo statistico per la determinazione di alcune priorieta dell’atome. Rend. Accad. Naz. Lincei 6(602–607), 32 (1927)

    Google Scholar 

  12. Chan, C., Hon, Y.: A constructive solution for a generalized Thomas-Fermi theory of ionized atoms. Q. Appl. Math. 45(3), 591–599 (1987)

    Article  MathSciNet  Google Scholar 

  13. Wazwaz, A.M.: Solving the non-isothermal reaction-diffusion model equations in a spherical catalyst by the variational iteration method. Chem. Phys. Lett. 679, 132–136 (2017)

    Article  Google Scholar 

  14. Reddien, G.: Projection methods and singular two point boundary value problems. Numer. Math. 21(3), 193–205 (1973)

    Article  MathSciNet  Google Scholar 

  15. Chawla, M., Katti, C.: Finite difference methods and their convergence for a class of singular two point boundary value problems. Numer. Math. 39(3), 341–350 (1982)

    Article  MathSciNet  Google Scholar 

  16. Iyengar, S., Jain, P.: Spline finite difference methods for singular two point boundary value problems. Numer. Math. 50(3), 363–376 (1986)

    Article  MathSciNet  Google Scholar 

  17. Kadalbajoo, M.K., Kumar, V.: B-spline method for a class of singular two-point boundary value problems using optimal grid. Appl. Math. Comput. 188(2), 1856–1869 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Inc, M., Ergut, M., Cherruault, Y.: A different approach for solving singular two-point boundary value problems. Kybern. Int. J. Syst. Cybern. 34(7), 934–940 (2005)

    Article  Google Scholar 

  19. Mittal, R., Nigam, R.: Solution of a class of singular boundary value problems. Numer. Algorithms 47(2), 169–179 (2008)

    Article  MathSciNet  Google Scholar 

  20. Khuri, S., Sayfy, A.: A novel approach for the solution of a class of singular boundary value problems arising in physiology. Math. Comput. Model. 52(3), 626–636 (2010)

    Article  MathSciNet  Google Scholar 

  21. Ebaid, A.: A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method. J. Comput. Appl. Math. 235(8), 1914–1924 (2011)

    Article  MathSciNet  Google Scholar 

  22. Khalique, Masood, Muatjetjeja, Ben: Lie group classification of the generalized Lane-Emden equation. Appl. Math. Comput. 210(2), 405–410 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Khalique, Masood, Mahomed, Fazal, Muatjetjeja, Ben: Lagrangian formulation of a generalized Lane-Emden equation and double reduction. J. Nonlinear Math. Phys. 15(2), 152–161 (2008)

    Article  MathSciNet  Google Scholar 

  24. Muatjetjeja, Ben, Chaudry, Masood: Exact solutions of the generalized Lane–Emden equations of the first and second kind. Pramana 77(3), 545–554 (2011)

    Article  Google Scholar 

  25. Muatjetjeja, Ben, Chaudry, Masood: A variational formulation approach to a generalized coupled inhomogeneous Emden–Fowler system. Appl. Anal. 93(3), 466–474 (2014)

    Article  MathSciNet  Google Scholar 

  26. Wazwaz, A., Rach, R.: Comparison of the Adomian decomposition method and the variational iteration method for solving the Lane–Emden equations of the first and second kinds. Kybernetes 40(9/10), 1305–1318 (2011)

    Article  MathSciNet  Google Scholar 

  27. Singh, R., Das, N., Kumar, J.: The optimal modified variational iteration method for the Lane–Emden equations with Neumann and Robin boundary conditions. Eur. Phys. J. Plus 132(6), 1–11 (2017)

    Article  Google Scholar 

  28. Danish, M., Kumar, S., Kumar, S.: A note on the solution of singular boundary value problems arising in engineering and applied sciences: use of OHAM. Comput. Chem. Eng. 36, 57–67 (2012)

    Article  Google Scholar 

  29. Singh, M., Verma, A.K.: An effective computational technique for a class of Lane–Emden equations. J. Math. Chem. 54(1), 231–251 (2016)

    Article  MathSciNet  Google Scholar 

  30. Singh, R.: Optimal homotopy analysis method for the non-isothermal reaction-diffusion model equations in a spherical catalyst. J. Math. Chem. 56, 2579–2590 (2018)

    Article  MathSciNet  Google Scholar 

  31. Singh, R.: Analytic solution of singular Emden–Fowler type equations by Green’s function and homotopy analysis method. Eur. Phys. J. Plus 134(11), 583 (2019)

    Article  Google Scholar 

  32. Verma, A.K., Kayenat, S.: On the convergence of Mickens’ type nonstandard finite difference schemes on Lane–Emden type equations. J. Math. Chem. 56(6), 1667–1706 (2018)

    Article  MathSciNet  Google Scholar 

  33. Singh, R., Garg, H., Guleria, V.: Haar wavelet collocation method for Lane-Emden equations with Dirichlet, Neumann and Neumann–Robin boundary conditions. J. Comput. Appl. Math. 346, 150–161 (2019)

    Article  MathSciNet  Google Scholar 

  34. Singh, R., Guleria, V., Singh, M.: Haar wavelet quasilinearization method for numerical solution of Emden–Fowler type equations. Math. Comput. Simul. 174, 123–133 (2020)

    Article  MathSciNet  Google Scholar 

  35. Singh, R., Shahni, J., Garg, H., Garg, A.: Haar wavelet collocation approach for Lane–Emden equations arising in mathematical physics and astrophysics. Eur. Phys. J. Plus 134(11), 548 (2019)

    Article  Google Scholar 

  36. Shahni, J., Singh, R.: Laguerre wavelet method for solving Thomas–Fermi type equations. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01309-7

    Article  MATH  Google Scholar 

  37. Feng, M.: Existence of symmetric positive solutions for a boundary value problem with integral boundary conditions. Appl. Math. Lett. 24(8), 1419–1427 (2011)

    Article  MathSciNet  Google Scholar 

  38. Yang, A., Sun, B., Ge, W.: Existence of positive solutions for self-adjoint boundary-value problems with integral boundary conditions at resonance. Electron. J. Differ. Equ. 2011(11), 1–8 (2011)

    Article  MathSciNet  Google Scholar 

  39. Zhang, X., Feng, M., Ge, W.: Existence result of second-order differential equations with integral boundary conditions at resonance. J. Math. Anal. Appl. 353(1), 311–319 (2009)

    Article  MathSciNet  Google Scholar 

  40. Adomian, G., Rach, R.: Inversion of nonlinear stochastic operators. J. Math. Anal. Appl. 91(1), 39–46 (1983)

    Article  MathSciNet  Google Scholar 

  41. Rach, R.: A new definition of the Adomian polynomials. Kybernetes 37(7), 910–955 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

RS contributed to formulation, methodology and programming. A-MW contributed to formulation. Both authors contributed equally in writing the paper and both read and approved the final manuscript.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Wazwaz, AM. An Efficient Method for Solving the Generalized Thomas–Fermi and Lane–Emden–Fowler Type Equations with Nonlocal Integral Type Boundary Conditions. Int. J. Appl. Comput. Math 8, 68 (2022). https://doi.org/10.1007/s40819-022-01280-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01280-x

Keywords

Navigation