Skip to main content
Log in

Shehu Transform in Quantum Calculus and Its Applications

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce the concept of Shehu transform in q-calculus namely q-Shehu transform and establish some properties. We also give some applications of q-Shehu transform for solving some ordinary and partial differential equations with initial and boundary values problems to show its effectiveness and performance of the proposed transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Maitama, S., Zhao, W.: New integral transform: Shehu transform a generalization of Sumudu and Laplace transform for solving differential equations. Int. J. Anal. Appl. 17(2), 167–190 (2019)

    MATH  Google Scholar 

  2. Baskonus, H.M., Bulut, H., Pandir, Y.: The natural decomposition method for linear and non-linear partial differential equations. MESA 5(1), 111–126 (2014)

    MATH  Google Scholar 

  3. Alfaqeih, S., Misirli, E.: On double Shehu transform and its properties with applications. Int. J. Anal. Appl. 18(3), 381–395 (2020)

    Google Scholar 

  4. Al-Omri, S.K.Q.: On the application of natural transforms. Int. J. Pure. Appl. Math. 85(4), 729–744 (2013)

    Google Scholar 

  5. Belgacem, R., Baleanu, D., Bokhari, A.: Shehu transform and applications to caputo-fractional differential equations. Int. J. Anal. Appl. 17(6), 917–927 (2019)

    Google Scholar 

  6. Bulut, H., Baskonus, H.M., Belgacem, F.B.M.: The analytical solution of some fractional ordinary differential equations by the Sumudu transform method. Abst. Appl. Anal. 203875, 1–6 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Debnath, L., Bhatta, D.: Integral Transform and Their Applications. CRC Press, London (2015)

    MATH  Google Scholar 

  8. Dinc, F., Baleanu, D.: A zero-crossing technique for the multidetermination of thiamine HCl and pyridoxine HCl in their mixture by using one-dimensional wavelet transform. J. Pharm. Biol. Anal. 31(5), 969–978 (2003)

    Article  Google Scholar 

  9. Maitama, S., Zhao, W.: New homotopy analysis transform method for solving multidimensional fractional diffusion equations. Arab. J. Basic. Appl. Sci. 27(1), 27–44 (2020)

    Article  Google Scholar 

  10. Ghadle, K.P., Magar, S.K., Dole, P.V.: A new Sumudu type integral transform and its applications. Proc. Fract. Differ. Appl. 7(3), 145–152 (2021)

    Article  Google Scholar 

  11. Mtawal, A.A.H., Alkallli, S.R.: A new modified homotopy method for fractional partial differential equations with proportional delay. J. Adv. Math. 19, 58–73 (2020)

    Article  Google Scholar 

  12. Qureshi, S., Kumar, P.: Using Shehu integral transform to solve fractional order caputo type initial problems. J. Appl. Math. Comp. Mech. 18(2), 75–83 (2019)

    Article  MathSciNet  Google Scholar 

  13. Hadid, S.B., Ibrahim, R.W., Mamoni, S.: On the en-tropic order quantity model based on the conformable calculus. Proc. Fract. Differ. Appl. 7(4), 263–273 (2021)

    Article  Google Scholar 

  14. Rashid, S., Praveen, S., Ahmed, H., Chu, Y.M.: New quantum integral inequality for some new class of generalized \(\psi \)-convex functions and their scope in physical systems. Open Phys. 19, 35–50 (2021)

    Google Scholar 

  15. Rashid, S., Baleanu, D., Chu, Y.M.: Some new extension for fractional integral operator having exponential in the kernel and their applications in physical systems. Open Phys. 18, 478–491 (2020)

    Article  Google Scholar 

  16. Rashid, S., Iscan, I., Baleanu, D., Chu, Y.M.: Generation of new fractional inequalities via n-polynomials S-type convexity with applications. Adv. Differ. Equ. 264, 1–20 (2020)

    MathSciNet  Google Scholar 

  17. Rashid, S., Noor, M.A., Nisar, K.S., Baleanu, D., Rahamen, G.: A new dynamics scheme via fractional operators on time scale. Front. Phys. 8, 1–10 (2020)

    Article  Google Scholar 

  18. Rashid, S., Hammouch, Z., Baleanu, D., Chu, Y.M.: New generalizations in the sense of the weighted non-singular fractional integral operators. Fractals (2020). https://doi.org/10.1142/S0218348X20400034

    Article  MATH  Google Scholar 

  19. Rashid, S., Kalsoom, H., Hammouch, Z., Ashraf, R., Baleanu, D., Chu, Y.M.: New multi-parametrized estimates having pth-order differentiability in fractional Calculus for predominating \(\hbar -\) convex functions in Hilbert space. Symmetry 12, 1–24 (2020)

    Google Scholar 

  20. Yang, X.J., Baleanu, D., Srivastava, H.M.: Local Fractional Integral Transform and Their Applications. Academic Press, Amsterdam (2015)

    Google Scholar 

  21. Jackson, F.H.: On a q-definite integral. Q. J. Appl. Math. 41, 193–203 (1910)

    MATH  Google Scholar 

  22. Kac, V.G., Cheung, P.: Quantum Calculus. Springer, New York (2002)

    Book  MATH  Google Scholar 

  23. Ganie, J.A., Jain, R.: On a system of q-Laplace transform of two variables with applications. J. Comp. Appl. Math. 366, 112407 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Piejko, K., Sokol, J., Wieclaw, K.T.: On q-calculus and strike functions. Iran. Sci. Technol. Trans. Sci. 43, 2879–2883 (2019)

    Article  MathSciNet  Google Scholar 

  25. Xu, L., Chu, Y.M., Rashid, S., Deeb, A.A., Nisar, K.S.: On new unified bounds for a family of functions via fractional q-calculus theory. J. Funct. Spat. 4984612, 1–9 (2020)

    MATH  Google Scholar 

  26. Sole, A.D., Kac, V.: On integral representation of q-gamma and q-beta functions. Rend. Math. Linecei. 9, 11–29 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Gasper, G., Rahmen, M.: Basic hypergeometric series, 2nd ed. In: Eencyclopedia of Mathematis and Its Applications. Cambridge University Press, Cambridge (2004)

  28. Riyasat, M., Khan, S.: Some results on q-Hermite based hybrid polynomials. Glasnik Matematicki 53(73), 9–31 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, Z.M., Chu, Y.M.: Asymptotic formulas for gamma function with applications. Appl. Math. Comput. 270, 665–680 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, J., Wang, W., Nie, J.: Soliton solutions for fractional Choquard equations. Proc. Fract. Differ. Appl. (2021). https://doi.org/10.18576/pfda/070103

    Article  Google Scholar 

  31. Knill, O.: Lecture Notes on Quantum Multivariable Calculus, pp. 1–31 (2007). https://people.math.harvard.edu/~knill/various/quantumcalc/c.pdf

Download references

Acknowledgements

The authors are extremely thankful to Department of Mathematics, National Institute of Technology Raipur (C.G.)-492010, India, for providing facilities, space and an opportunity for the work.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

A.K.S. and S.P. contributed equally to this work.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, A.K., Panda, S. Shehu Transform in Quantum Calculus and Its Applications. Int. J. Appl. Comput. Math 8, 19 (2022). https://doi.org/10.1007/s40819-021-01233-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01233-w

Keywords

Mathematics Subject Classification

Navigation