Skip to main content
Log in

On Some Plane Graphs and Their Metric Dimension

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Metric basis and metric dimension has become an integral part of molecular topology and combinatorial chemistry. It has a lot of applications in pharmacy, chemistry, computer, and mathematical disciplines. Let \(\Phi =(V,E)\) be a simple connected graph. A subset \(F=\{y_{1}, y_{2}, y_{3},\ldots ,y_{s}\}\) of distinct vertices from \(V(\Phi )\) is called a resolving set if for any \(a \in V(\Phi )\), the metric code of a with respect to F that is denoted by \(\zeta (a|F)\), which is defined as \(\zeta (a|F)=(d(y_{1},a), d(y_{2},a), d(y_{3}, a),\ldots , d(y_{s},a))\), is distinct for distinct a. Then, such a set F with minimum cardinality is called the metric basis for \(\Phi \), and this minimum cardinality of a resolving set F is called the metric dimension of \(\Phi \) and is denoted by \(dim(\Phi )\). A polytope in elementary geometry is a geometric object with flat sides. The polytopes which are convex sets and are contained in the n-dimensional space \(\mathbb {R}^{n}\) (Euclidean space) are termed convex polytopes. Convex polytopes have found a lot of applications in different areas of computer science and mathematics. In this work, we construct two closely related families of convex polytope graphs (viz., \(\mathfrak {D}_{n}\) and \(\mathfrak {Q}_{n}\)), using the existing families of convex polytope graphs. We study the metric dimension for these graphs and prove that only three vertices are a minimum requirement for the unique identification of all vertices in these graphs. We also give some partial answers to the problems raised in the recent past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahsan, M., Zahid, Z., Zafar, S., Rafiq, A., Sindhu, M.S., Umar, M.: Computing the edge metric dimension of convex polytopes related graphs. J. Math. Comput. Sci. 22, 174–188 (2021)

    Article  Google Scholar 

  2. Bǎca, M.: Labellings of two classes of convex polytopes. Util. Math. 34, 24–31 (1988)

    MATH  Google Scholar 

  3. Bǎca, M.: On magic labellings of convex polytopes. Ann. Disc. Math. 51, 13–16 (1992)

    Article  MathSciNet  Google Scholar 

  4. Buczkowski, P.S., Chartrand, G., Poisson, C., Zhang, P.: On k -dimensional graphs and their bases. Period. Math. Hung. 46(1), 9–15 (2003)

    Article  MathSciNet  Google Scholar 

  5. Caceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C., Wood, D.R.: On the metric dimension of some families of graphs. Electron. Notes Discret. Math. 22, 129–133 (2005)

    Article  Google Scholar 

  6. Caceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C., Wood, D.R.: On the metric dimension of cartesian product of graphs. SIAMJ. Discrete Math. 2(21), 423–441 (2007)

    Article  MathSciNet  Google Scholar 

  7. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105, 99–113 (2000)

    Article  MathSciNet  Google Scholar 

  8. Harary, F., Melter, R.A.: On the metric dimension of a graph. ARS Comb. 2, 191–195 (1976)

    MATH  Google Scholar 

  9. Imran, M., Baig, A.Q., Ahmad, A.: Families of plane graphs with constant metric dimension. Util. Math. 88, 43–57 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Imran, M., Bokhary, S.A., Baig, A.Q.: Families of rotationally-symmetric plane graphs with constant metric dimension. Southeast Asian Bull. Math. 36, 663–675 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Imran, M., Baig, A.Q., Bokhary, S.A.: On the metric dimension of rotationally-symmetric graphs. ARS Comb. 124, 111–128 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Javaid, I., Rahim, M.T., Ali, K.: Families of regular graphs with constant metric dimension. Util. Math. 75, 21–34 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Kelenc, A., Tratnik, N., Yero, I.G.: Uniquely identifying the edges of a graph: the edge metric dimension. Discrete Appl. Math. 31, 204–220 (2018)

    Article  MathSciNet  Google Scholar 

  14. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math. 70, 217–229 (1996)

    Article  MathSciNet  Google Scholar 

  15. Manuel, P.D., Rajan, B., Rajasingh, I., Monica, M.C.: On minimum metric dimension of honeycomb networks. J. Discrete Algorithm 6, 20–27 (2008)

    Article  MathSciNet  Google Scholar 

  16. Melter, R.A., Tomescu, I.: Metric bases in digital geometry. Comput. Gr. Image Process. 25, 113–121 (1984)

    Article  Google Scholar 

  17. Sebo, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29(2), 383–393 (2004)

    Article  MathSciNet  Google Scholar 

  18. Sharma, S.K., Bhat, V.K.: Metric dimension of heptagonal circular ladder. Discrete Math. Algorithms Appl. 13(1), 2050095 (2021)

    Article  MathSciNet  Google Scholar 

  19. Sharma, S.K., Bhat, V.K.: Fault-tolerant metric dimension of two-fold heptagonal-nonagonal circular ladder. Discrete Math. Algorithms Appl. (2021). https://doi.org/10.1142/S1793830921501329

    Article  Google Scholar 

  20. Siddiqui, H.M.A., Imran, M.: Computing the metric dimension of wheel related graphs. Appl. Math. Comput. 242, 624–632 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Singh, P., Sharma, S., Sharma, S.K., Bhat, V.K.: Metric dimension and edge metric dimension of windmill graphs. AIMS Math. 6, 9138–9153 (2021)

    Article  MathSciNet  Google Scholar 

  22. Slater, P.J.: Leaves of trees. Congr. Numer 14, 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

  23. Söderberg, S., Shapiro, H.S.: A combinatory detection problem. Am. Math. Mon. 70(10), 1066–1070 (1963)

    Article  MathSciNet  Google Scholar 

  24. Stojmenovic, I.: Direct interconnection networks. In: Zomaya, A.Y. (ed.) Parallel and Distributed Computing Handbook, pp. 537–567. McGraw-Hill, New York (1996)

    Google Scholar 

  25. Tomescu, I., Javaid, I.: On the metric dimension of the Jahangir graph. Bull. Math. Soc. Sci. Math. Roumanie 50(98), 371–376 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Xing, B.H., Sharma, S.K., Bhat, V.K., Raza, H., Liu, J.B.: The vertex-edge resolvability of some wheel-related graphs. J. Math. 1859714 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar Bhat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S.K., Bhat, V.K. On Some Plane Graphs and Their Metric Dimension. Int. J. Appl. Comput. Math 7, 203 (2021). https://doi.org/10.1007/s40819-021-01141-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01141-z

Keywords

Mathematics Subject Classification

Navigation